Papers tagged as e-cash
  1. Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin Cash? 2019 Bitcoin Blockchains e-cash Oakland
    Yujin Kwon, Hyoungshick Kim, Jinwoo Shin and Yongdae Kim

    In Aug. 2017, Bitcoin was split into the original Bitcoin (BTC) and Bitcoin Cash (BCH). Since then, miners have had a choice between BTC and BCH mining because they have compatible proof-of-work algorithms. Therefore, they can freely choose which coin to mine for higher profit, where the profitability depends on both the coin price and mining difficulty. Some miners can immediately switch the coin to mine only when mining difficulty changes because the difficulty changes are more predictable than that for the coin price, and we call this behavior fickle mining.
    In this paper, we study the effects of fickle mining by modeling a game between two coins. To do this, we consider both fickle miners and some factions (e.g., BITMAIN for BCH mining) that stick to mining one coin to maintain that chain. In this model, we show that fickle mining leads to a Nash equilibrium in which only a faction sticking to its coin mining remains as a loyal miner to the less valued coin (e.g., BCH), where loyal miners refer to those who conduct mining even after coin mining difficulty increases. This situation would cause severe centralization, weakening the security of the coin system.
    To determine which equilibrium the competing coin systems (e.g., BTC vs. BCH) are moving toward, we traced the historical changes of mining power for BTC and BCH. In addition, we analyze the recent “hash war” between Bitcoin ABC and SV, which confirms our theoretical analysis. Finally, we note that our results can be applied to any competing cryptocurrency systems in which the same hardware (e.g., ASICs or GPUs) can be used for mining. Therefore, our study brings new and important angles in competitive coin markets: a coin can intentionally weaken the security and decentralization level of the other rival coin when mining hardware is shared between them, allowing for automatic mining.

  2. Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake 2019 Blockchains e-cash Oakland
    Thomas Kerber, Markulf Kohlweiss, Aggelos Kiayias and Vassilis Zikas

    We present Ouroboros Crypsinous, the first formally analyzed privacy-preserving proof-of-stake blockchain protocol. To model its security we give a thorough treatment of private ledgers in the (G)UC setting that might be of independent interest.

    To prove our protocol secure against adaptive attacks, we introduce a new coin evolution technique relying on SNARKs and key-private forward secure encryption. The latter primitive—and the associated construction—can be of independent interest. We stress that existing approaches to private blockchain, such as the proof-of-work-based Zerocash are analyzed only against static corruptions.

  3. Proof-of-Stake Sidechains 2019 Blockchains e-cash Oakland
    Peter Gazi, Aggelos Kiayias, and Dionysis Zindros

    Sidechains have long been heralded as the key enabler of blockchain scalability and interoperability. However, no modeling of the concept or a provably secure construction has so far been attempted.
    We provide the first formal definition of what a sidechain system is and how assets can be moved between sidechains securely. We put forth a security definition that augments the known transaction ledger properties of liveness and safety to hold across multiple ledgers and enhance them with a new “firewall” security property which safeguards each blockchain from its sidechains, limiting the impact of an otherwise catastrophic sidechain failure.
    We then provide a sidechain construction that is suitable for proof-of-stake (PoS) sidechain systems. As an exemplary concrete instantiation we present our construction for an epoch- based PoS system consistent with Ouroboros (Crypto 2017), the PoS blockchain protocol used in Cardano which is one of the largest pure PoS systems by market capitalisation, and we also comment how the construction can be adapted for other protocols such as Ouroboros Praos (Eurocrypt 2018), Ouroboros Genesis (CCS 2018), Snow White and Algorand. An important feature of our construction is merged-staking that prevents “goldfinger” attacks against a sidechain that is only carrying a small amount of stake. An important technique for pegging chains that we use in our construction is cross-chain certification which is facilitated by a novel cryptographic primitive we introduce called ad-hoc threshold multisignatures (ATMS) which may be of independent interest. We show how ATMS can be securely instantiated by regular and aggregate digital signatures as well as succinct arguments of knowledge such as STARKs and bulletproofs with varying degrees of storage efficiency.

  4. Redactable Blockchain in the Permissionless Setting 2019 Blockchains e-cash Oakland
    Dominic Deuber, Bernardo Magri and Sri Aravinda Krishnan Thyagarajan

    Bitcoin is an immutable permissionless blockchain system that has been extensively used as a public bulletin board by many different applications that heavily relies on its immutability. However, Bitcoin’s immutability is not without its fair share of demerits. Interpol exposed the existence of harmful and potentially illegal documents, images and links in the Bitcoin blockchain, and since then there have been several qualitative and quantitative analysis on the types of data currently residing in the Bitcoin blockchain.

    Although there is a lot of attention on blockchains, surprisingly the previous solutions proposed for data redaction in the permissionless setting are far from feasible, and require additional trust assumptions. Hence, the problem of harmful data still poses a huge challenge for law enforcement agencies like Interpol (Tziakouris, IEEE S&P’18).

    We propose the first efficient redactable blockchain for the permissionless setting that is easily integrable into Bitcoin, and that does not rely on heavy cryptographic tools or trust assumptions. Our protocol uses a consensus-based voting and is parameterised by a policy that dictates the requirements and constraints for the redactions; if a redaction gathers enough votes the operation is performed on the chain. As an extra feature, our protocol offers public verifiability and accountability for the redacted chain. Moreover, we provide formal security definitions and proofs showing that our protocol is secure against redactions that were not agreed by consensus. Additionally, we show the viability of our approach with a proof-of-concept implementation that shows only a tiny overhead in the chain validation of our protocol when compared to an immutable one.

  5. Perun: Virtual Payment Hubs over Cryptocurrencies 2019 Blockchains e-cash Oakland
    Stefan Dziembowski, Lisa Eckey, Sebastian Faust and Daniel Malinowski

    Payment channels emerged recently as an efficient method for performing cheap micropayments in cryptocurrencies. In contrast to traditional on-chain transactions, payment channels have the advantage that they allow for nearly unlimited number of transactions between parties without involving the blockchain. In this work, we introduce Perun, an off-chain channel system that offers a new method for connecting channels that is more efficient than the existing technique of “routing transactions” over multiple channels. To this end, Perun introduces a technique called “virtual payment channels” that avoids involvement of the intermediary for each individual payment. In this paper we formally model and prove security of this technique in the case of one intermediary, who can be viewed as a “payment hub” that has direct channels with several parties. Our scheme works over any cryptocurrency that provides Turing-complete smart contracts. As a proof of concept, we implemented Perun’s smart contracts in Ethereum.

  6. TumbleBit: An Untrusted Bitcoin-Compatible Anonymous Payment Hub 2017 Blockchains e-cash NDSS Privacy
    Ethan Heilman and Leen Alshenibr and Foteini Baldimtsi and Alessandra Scafuro and Sharon Goldberg

    This paper presents TumbleBit, a new unidirectional unlinkable payment hub that is fully compatible with today’s Bitcoin protocol. TumbleBit allows parties to make fast, anonymous, off-blockchain payments through an untrusted intermediary called the Tumbler. TumbleBit’s anonymity properties are similar to classic Chaumian eCash: no one, not even the Tumbler, can link a payment from its payer to its payee. Every payment made via TumbleBit is backed by bitcoins, and comes with a guarantee that Tumbler can neither violate anonymity, nor steal bitcoins, nor ``print money’’ by issuing payments to itself. We prove the security of TumbleBit using the real/ideal world paradigm and the random oracle model. Security follows from the standard RSA assumption and ECDSA unforgeability. We implement TumbleBit, mix payments from 800 users and show that TumbleBit’s off-blockchain payments can complete in seconds.