1. A Smart Contract for Boardroom Voting with Maximum Voter Privacy 2017 Blockchains FinancialCryptography Privacy SmartContracts fc17.ifca.ai
    Patrick McCorry, Siamak Shahandashti, Feng Hao

    We present the first implementation of a decentralised and self-tallying internet voting protocol with maximum voter privacy using the Blockchain. The Open Vote Network is suitable for boardroom elec- tions and is written as a smart contract for Ethereum. Unlike previously proposed Blockchain e-voting protocols, this is the first implementation that does not rely on any trusted authority to compute the tally or to protect the voter’s privacy. Instead, the Open Vote Network is a self- tallying protocol, and each voter is in control of the privacy of their own vote such that it can only be breached by a full collusion involving all other voters. The execution of the protocol is enforced using the consensus mechanism that also secures the Ethereum blockchain. We tested the implementation on Ethereum’s official test network to demonstrate its feasibility. Also, we provide a financial and computational breakdown of its execution cost.

  2. Instantaneous Decentralized Poker 2017 Asiacrypt Blockchains MPC SmartContracts eprint.iacr.org
    Iddo Bentov and Ranjit Kumaresan and Andrew Miller

    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs in the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adapt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features.

  3. zkay: Specifying and Enforcing Data Privacy in Smart Contracts 2019 CCS SmartContracts ZK files.sri.inf.ethz.ch
    Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov and Martin Vechev

    Privacy concerns of smart contracts are a major roadblock preventing their wider adoption. A promising approach to protect private data is hiding it with cryptographic primitives and then enforcing correctness of state updates by Non-Interactive Zero-Knowledge (NIZK) proofs. Unfortunately, NIZK statements are less expressive than smart contracts, forcing developers to keep some functionality in the contract. This results in scattered logic, split across contract code and NIZK statements, with unclear privacy guarantees. To address these problems, we present the zkay language, which introduces privacy types defining owners of private values. zkay contracts are statically type checked to (i) ensure they are realizable using NIZK proofs and (ii) prevent unintended information leaks. Moreover, the logic of zkay contracts is easy to follow by just ignoring privacy types. To enforce zkay contracts, we automatically transform them into contracts equivalent in terms of privacy and functionality, yet executable on public blockchains. We evaluated our approach on a proof-of-concept implementation generating Solidity contracts and implemented 10 interesting example contracts in zkay. Our results indicate that zkay is practical: On-chain cost for executing the transformed contracts is around 1M gas per transaction (~0.50US$) and off-chain cost is moderate.

  4. Arbitrum: Scalable, private smart contracts 2018 SmartContracts Usenix usenix.org
    Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten

    We present Arbitrum, a cryptocurrency system that supports smart contracts without the limitations of scalability and privacy of systems previous systems such as Ethereum. Arbitrum, like Ethereum, allows parties to create smart contracts by using code to specify the behavior of a virtual machine (VM) that implements the contract’s functionality. Arbitrum uses mechanism design to incentivize parties to agree off-chain on what a VM would do, so that the Arbitrum miners need only verify digital signatures to confirm that parties have agreed on a VM’s behavior. In the event that the parties cannot reach unanimous agreement off-chain, Arbitrum still allows honest parties to advance the VM state on-chain. If a party tries to lie about a VM’s behavior, the verifier (or miners) will identify and penalize the dishonest party by using a highly-efficient challenge-based protocol that exploits features of the Arbitrum virtual machine architecture. Moving the verification of VMs’ behavior off-chain in this way provides dramatic improvements in scalability and privacy. We describe Arbitrum’s protocol and virtual machine architecture, and we present a working prototype implementation.

  5. FastKitten: Practical Smart Contracts on Bitcoin 2019 Bitcoin SmartContracts Usenix usenix.org
    Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková, Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi

    Smart contracts are envisioned to be one of the killer applications of decentralized cryptocurrencies. They enable self-enforcing payments between users depending on complex program logic. Unfortunately, Bitcoin – the largest and by far most widely used cryptocurrency – does not offer support for complex smart contracts. Moreover, simple contracts that can be executed on Bitcoin are often cumbersome to design and very costly to execute. In this work we present FastKitten, a practical framework for executing arbitrarily complex smart contracts at low costs over decentralized cryptocurrencies which are designed to only support simple transactions. To this end, FastKitten leverages the power of trusted computing environments (TEEs), in which contracts are run off-chain to enable efficient contract execution at low cost. We formally prove that FastKitten satisfies strong security properties when all but one party are malicious. Finally, we report on a prototype implementation which supports arbitrary contracts through a scripting engine, and evaluate performance through benchmarking a provably fair online poker game. Our implementation illustrates that FastKitten is practical for complex multi-round applications with a very small latency. Combining these features, FastKitten is the first truly practical framework for complex smart contract execution over Bitcoin.