1. Decentralized Anonymous Micropayments 2017 Blockchains Eurocrypt PaymentChannels eprint.iacr.org
    Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and Pratyush Mishra

    Micropayments (payments worth a few pennies) have numerous potential applications. A challenge in achieving them is that payment networks charge fees that are high compared to “micro” sums of money.

    Wheeler (1996) and Rivest (1997) proposed probabilistic payments as a technique to achieve micropayments: a merchant receives a macro-value payment with a given probability so that, in expectation, he receives a micro-value payment. Despite much research and trial deployment, micropayment schemes have not seen adoption, partly because a trusted party is required to process payments and resolve disputes.

    The widespread adoption of decentralized currencies such as Bitcoin (2009) suggests that decentralized micropayment schemes are easier to deploy. Pass and Shelat (2015) proposed several micropayment schemes for Bitcoin, but their schemes provide no more privacy guarantees than Bitcoin itself, whose transactions are recorded in plaintext in a public ledger.

    We formulate and construct decentralized anonymous micropayment (DAM) schemes, which enable parties with access to a ledger to conduct offline probabilistic payments with one another, directly and privately. Our techniques extend those of Zerocash (2014) with a new probabilistic payment scheme; we further provide an efficient instantiation based on a new fractional message transfer protocol.

    Double spending in our setting cannot be prevented. Our second contribution is an economic analysis that bounds the additional utility gain of any cheating strategy, and applies to virtually any probabilistic payment scheme with offline validation. In our construction, this bound allows us to deter double spending by way of advance deposits that are revoked when cheating is detected.

  2. Bolt: Anonymous Payment Channels for Decentralized Currencies 2017 Blockchains CCS Implementation PaymentChannels acmccs.github.io
    Matthew Green and Ian Miers

    Bitcoin owes its success to the fact that transactions are transparently recorded in the blockchain, a global public ledger that removes the need for trusted parties. Unfortunately, recording every transaction in the blockchain causes privacy, latency, and scalability issues. Building on recent proposals for “micropayment channels” — two party associations that use the ledger only for dispute resolution — we introduce techniques for constructing anonymous payment channels. Our proposals allow for secure, instantaneous and private payments that substantially reduce the storage burden on the payment network. Specifically, we introduce three channel proposals, including a technique that allows payments via untrusted intermediaries. We build a concrete implementation of our scheme and show that it can be deployed via a soft fork to existing anonymous currencies such as ZCash.

  3. Atomic Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-Channel Networks 2019 Bitcoin CCS PaymentChannels eprint.iacr.org
    Christoph Egger, Pedro Moreno-Sanchez and Matteo Maffei

    Current cryptocurrencies provide a heavily limited transaction throughput that is clearly insufficient to cater their growing adoption. Payment-channel networks (PCNs) have emerged as an interesting solution to the scalability issue and are currently deployed by popular cryptocurrencies such as Bitcoin and Ethereum. While PCNs do increase the transaction throughput by processing payments off-chain and using the blockchain only as a dispute arbitrator, they unfortunately require high collateral (i.e., they lock coins for a non-constant time along the payment path) and are restricted to payments in a path from sender to receiver. These issues have severe consequences in practice. The high collateral enables denial-of-service attacks that hamper the throughput and utility of the PCN. Moreover, the limited functionality hinders the applicability of current PCNs in many important application scenarios. Unfortunately, current proposals do not solve either of these issues, or they require Turing-complete language support, which severely limit their applicability.

    In this work, we present AMCU, the first protocol for atomic multi-channel updates and reduced collateral that is compatible with Bitcoin (and other cryptocurrencies with reduced scripting capabilities). We provide a formal model in the Universal Composability framework and show that AMCU realizes it, thus demonstrating that AMCU achieves atomicity and value privacy. Moreover, the reduced collateral mitigates the consequences of griefing attacks in PCNs while the (multi-payment) atomicity achieved by AMCU opens the door to new applications such as credit rebalancing and crowdfunding that are not possible otherwise. Moreover, our evaluation results demonstrate that AMCU has a performance in line with that of the Lightning Network (the most widely deployed PCN) and thus is ready to be deployed in practice.

  4. Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability 2019 Blockchains NDSS PaymentChannels Privacy ndss-symposium.org
    Giulio Malavolta and Pedro Moreno Sanchez and Clara Schneidewind and Aniket Kate and Matteo Maffei

    Tremendous growth in cryptocurrency usage is exposing the inherent scalability issues with permissionless blockchain technology. Payment-channel networks (PCNs) have emerged as the most widely deployed solution to mitigate the scalability issues, allowing the bulk of payments between two users to be carried out off-chain. Unfortunately, as reported in the literature and further demonstrated in this paper, current PCNs do not provide meaningful security and privacy guarantees [30], [40].

    In this work, we study and design secure and privacy-preserving PCNs. We start with a security analysis of existing PCNs, reporting a new attack that applies to all major PCNs, including the Lightning Network, and allows an attacker to steal the fees from honest intermediaries in the same payment path. We then formally define anonymous multi-hop locks (AMHLs), a novel cryptographic primitive that serves as a cornerstone for the design of secure and privacy-preserving PCNs. We present several provably secure cryptographic instantiations that make AMHLs compatible with the vast majority of cryptocurrencies. In particular, we show that (linear) homomorphic one-way functions suffice to construct AMHLs for PCNs supporting a script language (e.g., Ethereum). We also propose a construction based on ECDSA signatures that does not require scripts, thus solving a prominent open problem in the field.

    AMHLs constitute a generic primitive whose usefulness goes beyond multi-hop payments in a single PCN and we show how to realize atomic swaps and interoperable PCNs from this primitive. Finally, our performance evaluation on a commodity machine finds that AMHL operations can be performed in less than 100 milliseconds and require less than 500 bytes of communication overhead, even in the worst case. In fact, after acknowledging our attack, the Lightning Network developers have implemented our ECDSA-based AMHLs into their PCN. This demonstrates the practicality of our approach and its impact on the security, privacy, interoperability, and scalability of today’s cryptocurrencies.