Papers tagged as IPSec
  1. The Dangers of Key Reuse: Practical Attacks on IPsec IKE 2018 Attacks IKE IPSec Usenix usenix.org
    Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam Czubak and Marcin Szymanek

    IPsec enables cryptographic protection of IP packets. It is commonly used to build VPNs (Virtual Private Networks). For key establishment, the IKE (Internet Key Exchange) protocol is used. IKE exists in two versions, each with different modes, different phases, several authentication methods, and configuration options.


    In this paper, we show that reusing a key pair across different versions and modes of IKE can lead to cross-protocol authentication bypasses, enabling the impersonation of a victim host or network by attackers. We exploit a Bleichenbacher oracle in an IKEv1 mode, where RSA encrypted nonces are used for authentication. Using this exploit, we break these RSA encryption based modes, and in addition break RSA signature based authentication in both IKEv1 and IKEv2. Additionally, we describe an offline dictionary attack against the PSK (Pre-Shared Key) based IKE modes, thus covering all available authentication mechanisms of IKE.


    We found Bleichenbacher oracles in the IKEv1 implementations of Cisco (CVE-2018-0131), Huawei (CVE-2017-17305), Clavister (CVE-2018-8753), and ZyXEL (CVE-2018-9129). All vendors published fixes or removed the particular authentication method from their devices’ firmwares in response to our reports.

  2. Measuring small subgroup attacks against Diffie-Hellman 2017 Attacks Diffie-Hellman IPSec Measurement NDSS TLS eprint.iacr.org
    Luke Valenta and David Adrian and Antonio Sanso and Shaanan Cohney and Joshua Fried and Marcella Hastings and J. Alex Halderman and Nadia Heninger

    Several recent standards, including NIST SP 800- 56A and RFC 5114, advocate the use of “DSA” parameters for Diffie-Hellman key exchange. While it is possible to use such parameters securely, additional validation checks are necessary to prevent well-known and potentially devastating attacks. In this paper, we observe that many Diffie-Hellman implementations do not properly validate key exchange inputs. Combined with other protocol properties and implementation choices, this can radically decrease security. We measure the prevalence of these parameter choices in the wild for HTTPS, POP3S, SMTP with STARTTLS, SSH, IKEv1, and IKEv2, finding millions of hosts using DSA and other non-“safe” primes for Diffie-Hellman key exchange, many of them in combination with potentially vulnerable behaviors. We examine over 20 open-source cryptographic libraries and applications and observe that until January 2016, not a single one validated subgroup orders by default. We found feasible full or partial key recovery vulnerabilities in OpenSSL, the Exim mail server, the Unbound DNS client, and Amazon’s load balancer, as well as susceptibility to weaker attacks in many other applications.