Papers tagged as Certificates
  1. Secure Opportunistic Multipath Key Exchange 2018 CCS Certificates PKI TLS eprint.iacr.org
    Sergiu Costea, Marios O. Choudary, Doru Gucea, Björn Tackmann and Costin Raiciu

    The security of today’s widely used communication security protocols is based on trust in Certificate Authorities (CAs). However, the real security of this approach is debatable, since certificate handling is tedious and many recent attacks have undermined the trust in CAs. On the other hand, opportunistic encryption protocols such as Tcpcrypt, which are currently gaining momentum as an alternative to no encryption, have similar security to using untrusted CAs or self-signed certificates: they only protect against passive attackers.


    In this paper, we present a key exchange protocol, Secure Multipath Key Exchange (SMKEX), that enables all the benefits of opportunistic encryption (no need for trusted third parties or pre-established secrets), as well as proven protection against some classes of active attackers. Furthermore, SMKEX can be easily extended to a trust-on-first-use setting and can be easily integrated with TLS, providing the highest security for opportunistic encryption to date while also increasing the security of standard TLS.


    We show that SMKEX is made practical by the current availability of path diversity between different AS-es. We also show a method to create path diversity with encrypted tunnels without relying on the network topology. These allow SMKEX to provide protection against most adversaries for a majority of Alexa top 100 web sites.


    We have implemented SMKEX using a modified Multipath TCP kernel implementation and a user library that overwrites part of the socket API, allowing unmodified applications to take advantage of the security provided by SMKEX.

  2. Transparency Logs via Append-only Authenticated Dictionaries 2019 CCS Certificates eprint.iacr.org
    Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou, Nikos Triandopoulos and Srinivas Devadas

    Transparency logs allow users to audit a potentially malicious service, paving the way towards a more accountable Internet. For example, Certificate Transparency (CT) enables domain owners to audit Certificate Authorities (CAs) and detect impersonation attacks. Yet, to achieve their full potential, transparency logs must be bandwidth-efficient when queried by users. Specifically, everyone should be able to efficiently look up log entries by their key and efficiently verify that the log remains append-only. Unfortunately, without additional trust assumptions, current transparency logs cannot provide both small-sized lookup proofs and small-sized append-only proofs. In fact, one of the proofs always requires bandwidth linear in the size of the log, making it expensive for everyone to query the log. In this paper, we address this gap with a new primitive called an append-only authenticated dictionary (AAD). Our construction is the first to achieve (poly)logarithmic size for both proof types and helps reduce bandwidth consumption in transparency logs. This comes at the cost of increased append times and high memory usage, both of which remain to be improved to make practical deployment possible.

  3. TrustBase: An Architecture to Repair and Strengthen Certificate-based Authentication 2017 Certificates Usenix usenix.org
    Mark O’Neill, Scott Heidbrink, Scott Ruoti, Jordan Whitehead, Dan Bunker, Luke Dickinson, Travis Hendershot, Joshua Reynolds, Kent Seamons, and Daniel Zappala

    The current state of certificate-based authentication is messy, with broken authentication in applications and proxies, along with serious flaws in the CA system. To solve these problems, we design TrustBase, an architecture that provides certificate-based authentication as an operating system service, with system administrator control over authentication policy. TrustBase transparently enforces best practices for certificate validation on all applications, while also providing a variety of authentication services to strengthen the CA system. We describe a research prototype of TrustBase for Linux, which uses a loadable kernel module to intercept traffic in the socket layer, then consults a userspace policy engine to evaluate certificate validity using a variety of plugins. We evaluate the security of TrustBase, including a threat analysis, application coverage, and hardening of the Linux prototype. We also describe prototypes of TrustBase for Android and Windows, illustrating the generality of our approach. We show that TrustBase has negligible overhead and universal compatibility with applications. We demonstrate its utility by describing eight authentication services that extend CA hardening to all applications.