1. Economically Optimal Variable Tag Length Authentication 2017 Authentication FinancialCryptography fc17.ifca.ai
    Reihaneh Safavi-Naini, Viliam Lisy, Yvo Desmedt

    Cryptographic authentication protects messages against forgeries. In real life, messages carry information of different value and the gain of the adversary in a successful forgery and the corresponding cost of the system designers, depend on the “meaning” of the message. This is easy to see by comparing the successful forgery of a $1,000 transaction with the forgery of a $1 one. Cryptographic protocols require computation and increase communication cost of the system, and an economically optimal system must optimize these costs such that message protection be commensurate to their values. This is especially important for resource limited devices that rely on battery power. A MAC (Message Authentication Code) provides protection by appending a cryptographic tag to the message. For secure MACs, the tag length is the main determinant of the security level: longer tags provide higher protection and at the same time increase the communication cost of the system. Our goal is to find the economically optimal tag lengths when messages carry information of different values.

    We propose a novel approach to model the cost and benefit of information authentication as a two-party extensive-form game, show how to find a Nash equilibrium for the game, and determine the optimal tag lengths for messages. We prove that computing an optimal solution for the game is NP-complete, and then show how to find an optimal solution using single Mixed Integer Linear Program (MILP). We apply the approach to the protection of messages in an industrial control system using realistic messages, and give our analysis with numerical results obtained using off-the-shelf IBM CPLEX solver.

  2. BehavioCog: An Observation Resistant Authentication Scheme 2017 Authentication biometrics FinancialCryptography fc17.ifca.ai
    Jagmohan Chauhan, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, Jonathan Chan, and Mohamed Ali Kaafar

    We propose that by integrating behavioural biometric gestures—such as drawing figures on a touch screen—with challenge-response based cognitive authentication schemes, we can benefit from the properties of both. On the one hand, we can improve the usability of existing cognitive schemes by significantly reducing the number of challenge-response rounds by (partially) relying on the hardness of mimicking carefully de-signed behavioural biometric gestures. On the other hand, the observation resistant property of cognitive schemes provides an extra layer of protection for behavioural biometrics; an attacker is unsure if a failed impersonation is due to a biometric failure or a wrong response to the challenge. We design and develop a prototype of such a “hybrid” scheme,named BehavioCog. To provide security close to a 4-digit PIN—one in 10,000 chance to impersonate—we only need two challenge-response rounds, which can be completed in less than 38 seconds on average (as estimated in our user study), with the advantage that unlike PINs or passwords, the scheme is secure under observation.

  3. AuthentiCall: Efficient Identity and Content Authentication for Phone Calls 2017 Authentication Usenix usenix.org
    Bradley Reaves, Logan Blue, Hadi Abdullah, Luis Vargas, Patrick Traynor, and Thomas Shrimpton

    Phones are used to confirm some of our most sensitive transactions. From coordination between energy providers in the power grid to corroboration of high-value transfers with a financial institution, we rely on telephony to serve as a trustworthy communications path. However, such trust is not well placed given the widespread understanding of telephony’s inability to provide end-to-end authentication between callers. In this paper, we address this problem through the AuthentiCall system. AuthentiCall not only cryptographically authenticates both parties on the call, but also provides strong guarantees of the integrity of conversations made over traditional phone networks. We achieve these ends through the use of formally verified protocols that bind low-bitrate data channels to heterogeneous audio channels. Unlike previous efforts, we demonstrate that AuthentiCall can be used to provide strong authentication before calls are answered, allowing users to ignore calls claiming a particular Caller ID that are unable or unwilling to provide proof of that assertion. Moreover, we detect 99% of tampered call audio with negligible false positives and only a worst-case 1.4 second call establishment overhead. In so doing, we argue that strong and efficient end-to-end authentication for phone networks is approaching a practical reality.

  4. True2F: Backdoor-resistant authentication tokens 2019 Authentication Backdoors Oakland scs.stanford.edu
    Emma Dauterman, Henry Corrigan-Gibbs , David Mazieres, Dan Boneh and Dominic Rizzo

    We present True2F, a system for second-factor authentication that provides the benefits of conventional authentication tokens in the face of phishing and software compromise, while also providing strong protection against token faults and backdoors. To do so, we develop new lightweight two-party protocols for generating cryptographic keys and ECDSA signatures, and we implement new privacy defenses to prevent cross-origin token-fingerprinting attacks. To facilitate real-world deployment, our system is backwards-compatible with today’s U2F-enabled web services and runs on commodity hardware tokens after a firmware modification. A True2F-protected authentication takes just 57ms to complete on the token, compared with 23ms for unprotected U2F.