1. Friet: An Authenticated Encryption Scheme with Built-in Fault Detection 2020 AuthenticatedEncryption Eurocrypt SymmetricKey eprint.iacr.org
    Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Costa Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel

    In this work we present a duplex-based authenticated encryption scheme Friet based on a new permutation called Friet-P. We designed Friet-P with a novel approach for cryptographic permutations and block ciphers that takes fault-attack resistance into account and that we introduce in this paper. In this method, we build a permutation fC to be embedded in a larger one, f . First, we define f as a sequence of steps that all abide a chosen error-correcting code C, i.e., that map C-codewords to C-codewords. Then, we embed fC in f by first encoding its input to an element of C, applying f and then decoding back from C. This last step detects a fault when the output of f is not in C. We motivate the design of the permutation we use in Friet and report on performance in soft- and hardware. We evaluate the fault-detection capabilities of the software and simulated hardware implementations with attacks. Finally, we perform a leakage evaluation. Our code is available at https://github.com/thisimon/Friet.git.

  2. Security under Message-Derived Keys: Signcryption in iMessage 2020 AuthenticatedEncryption Eurocrypt PublicKeyEncryption SecureMessaging SymmetricKey eprint.iacr.org
    Mihir Bellare and Igors Stepanovs

    At the core of Apple’s iMessage is a signcryption scheme that involves symmetric encryption of a message under a key that is derived from the message itself. This motivates us to formalize a primitive we call Encryption under Message-Derived Keys (EMDK). We prove security of the EMDK scheme underlying iMessage. We use this to prove security of the signcryption scheme itself, with respect to definitions of signcryption we give that enhance prior ones to cover issues peculiar to messaging protocols. Our provable-security results are quantitative, and we discuss the practical implications for iMessage.

  3. Computation on Encrypted Data using Dataflow Authentication 2020 AuthenticatedEncryption PETS petsymposium.org
    Andreas Fischer, Benny Fuhry, Florian Kerschbaum, and Eric Bodden

    Encrypting data before sending it to the cloud protects it against hackers and malicious insiders, but requires the cloud to compute on encrypted data. Trusted (hardware) modules, e.g., secure enclaves like Intel’s SGX, can very efficiently run entire programs in encrypted memory. However, it already has been demonstrated that software vulnerabilities give an attacker ample opportunity to insert arbitrary code into the program. This code can then modify the data flow of the program and leak any secret in the program to an observer in the cloud via SGX side-channels. Since any larger program is rife with software vulnerabilities, it is not a good idea to outsource entire programs to an SGX enclave. A secure alternative with a small trusted code base would be fully homomorphic encryption (FHE) – the holy grail of encrypted computation. However, due to its high computational complexity it is unlikely to be adopted in the near future. As a result researchers have made several proposals for transforming programs to perform encrypted computations on less powerful encryption schemes. Yet, current approaches fail on programs that make control-flow decisions based on encrypted data. In this paper, we introduce the concept of data flow authentication (DFAuth). DFAuth prevents an adversary from arbitrarily deviating from the data flow of a program. Hence, an attacker cannot perform an attack as outlined before on SGX. This enables that all programs, even those including operations on control-flow decision variables, can be computed on encrypted data. We implemented DFAuth using a novel authenticated homomorphic encryption scheme, a Java bytecode-to-bytecode compiler producing fully executable programs, and SGX enclaves. A transformed neural network that performs machine learning on sensitive medical data can be evaluated on encrypted inputs and encrypted weights in 0.86 seconds.

  4. Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages 2019 Asiacrypt AuthenticatedEncryption SymmetricKey eprint.iacr.org
    Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab Roy and Damian Vizar

    Highly efficient encryption and authentication of short messages is an essential requirement for enabling security in constrained scenarios such as the CAN FD in automotive systems (max. message size 64 bytes), massive IoT, critical communication domains of 5G, and Narrowband IoT, to mention a few. In addition, one of the NIST lightweight cryptography project requirements is that AEAD schemes shall be “optimized to be efficient for short messages (e.g., as short as 8 bytes)”.

    In this work we introduce and formalize a novel primitive in symmetric cryptography called a forkcipher. A forkcipher is a keyed function expanding a fixed-length input to a fixed-length output. We define its security as indistinguishability under chosen ciphertext attack. We give a generic construction validation via the new iterate-fork-iterate design paradigm.

    We then propose ForkSkinny as a concrete forkcipher instance with a public tweak and based on SKINNY: a tweakable lightweight block cipher constructed using the TWEAKEY framework. We conduct extensive cryptanalysis of ForkSkinny against classical and structure-specific attacks.

    We demonstrate the applicability of forkciphers by designing three new provably-secure, nonce-based AEAD modes which offer performance and security tradeoffs and are optimized for efficiency of very short messages. Considering a reference block size of 16 bytes, and ignoring possible hardware optimizations, our new AEAD schemes beat the best SKINNY-based AEAD modes. More generally, we show forkciphers are suited for lightweight applications dealing with predominantly short messages, while at the same time allowing handling arbitrary messages sizes.

    Furthermore, our hardware implementation results show that when we exploit the inherent parallelism of ForkSkinny we achieve the best performance when directly compared with the most efficient mode instantiated with the SKINNY block cipher.

  5. Fast Message Franking: From Invisible Salamanders to Encryptment 2018 AuthenticatedEncryption Crypto eprint.iacr.org
    Yevgeniy Dodis and Paul Grubbs and Thomas Ristenpart and Joanne Woodage

    Message franking enables cryptographically verifiable reporting of abusive content in end-to-end encrypted messaging. Grubbs, Lu, and Ristenpart recently formalized the needed underlying primitive, what they call compactly committing authenticated encryption (AE), and analyzed the security of a number of approaches. But all known secure schemes are still slow compared to the fastest standard AE schemes. For this reason Facebook Messenger uses AES-GCM for franking of attachments such as images or videos. We show how to break Facebook’s attachment franking scheme: a malicious user can send an objectionable image to a recipient but that recipient cannot report it as abuse. The core problem stems from use of fast but non-committing AE, and so we build the fastest compactly committing AE schemes to date. To do so we introduce a new primitive, called encryptment, which captures the essential properties needed. We prove that, unfortunately, schemes with performance profile similar to AES-GCM won’t work. Instead, we show how to efficiently transform Merkle-Damgärd-style hash functions into secure encryptments, and how to efficiently build compactly committing AE from encryptment. Ultimately our main construction allows franking using just a single computation of SHA-256 or SHA-3. Encryptment proves useful for a variety of other applications, such as remotely keyed AE and concealments, and our results imply the first single-pass schemes in these settings as well.

  6. Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds 2018 AuthenticatedEncryption Eurocrypt SymmetricKey eprint.iacr.org
    Priyanka Bose, Viet Tung Hoang and Stefano Tessaro

    This paper revisits the multi-user (mu) security of symmetric encryption, from the perspective of delivering an analysis of the AES-GCM-SIV AEAD scheme. Our end result shows that its mu security is comparable to that achieved in the single-user setting. In particular, even when instantiated with short keys (e.g., 128 bits), the security of AES-GCM-SIV is not impacted by the collisions of two user keys, as long as each individual nonce is not re-used by too many users. Our bounds also improve existing analyses in the single-user setting, in particular when messages of variable lengths are encrypted. We also validate security against a general class of key-derivation methods, including one that halves the complexity of the final proposal.

    As an intermediate step, we consider mu security in a setting where the data processed by every user is bounded, and where user keys are generated according to arbitrary, possibly correlated distributions. This viewpoint generalizes the currently adopted one in mu security, and can be used to analyze re-keying practices.

  7. Authenticated Encryption in the Face of Protocol and Side Channel Leakage 2017 Asiacrypt AuthenticatedEncryption Pairings SideChannels eprint.iacr.org
    Guy Barwell and Daniel P. Martin and Elisabeth Oswald and Martijn Stam

    Authenticated encryption schemes in practice have to be robust against adversaries that have access to various types of leakage, for instance decryption leakage on invalid ciphertexts (protocol leakage), or leakage on the underlying primitives (side channel leakage). This work includes several novel contributions: we augment the notion of nonce-base authenticated encryption with the notion of continuous leakage and we prove composition results in the face of protocol and side channel leakage. Moreover, we show how to achieve authenticated encryption that is simultaneously both misuse resistant and leakage resilient, based on a sufficiently leakage resilient PRF, and finally we propose a concrete, pairing-based, instantiation of the latter.

  8. Key Rotation for Authenticated Encryption 2017 AuthenticatedEncryption Crypto eprint.iacr.org
    Adam Everspaugh, Kenneth Paterson, Thomas Ristenpart, Sam Scott

    A common requirement in practice is to periodically rotate the keys used to encrypt stored data. Systems used by Amazon and Google do so using a hybrid encryption technique which is eminently practical but has questionable security in the face of key compromises and does not provide full key rotation. Meanwhile, symmetric updatable encryption schemes (introduced by Boneh et al. CRYPTO 2013) support full key rotation without performing decryption: ciphertexts created under one key can be rotated to ciphertexts created under a different key with the help of a re-encryption token. By design, the tokens do not leak information about keys or plaintexts and so can be given to storage providers without compromising security. But the prior work of Boneh et al. addresses relatively weak confidentiality goals and does not consider integrity at all. Moreover, as we show, a subtle issue with their concrete scheme obviates a security proof even for confidentiality against passive attacks.

    This paper presents a systematic study of updatable Authenticated Encryption (AE). We provide a set of security notions that strengthen those in prior work. These notions enable us to tease out real-world security requirements of different strengths and build schemes that satisfy them efficiently. We show that the hybrid approach currently used in industry achieves relatively weak forms of confidentiality and integrity, but can be modified at low cost to meet our stronger confidentiality and integrity goals. This leads to a practical scheme that has negligible overhead beyond conventional AE. We then introduce re-encryption indistinguishability, a security notion that formally captures the idea of fully refreshing keys upon rotation. We show how to repair the scheme of Boneh et al., attaining our stronger confidentiality notion. We also show how to extend the scheme to provide integrity, and we prove that it meets our re- encryption indistinguishability notion. Finally, we discuss how to instantiate our scheme efficiently using off-the-shelf cryptographic components (AE, hashing, elliptic curves). We report on the performance of a prototype implementation, showing that fully secure key rotations can be performed at a throughput of approximately 116 kB/s.