Papers tagged as ABE
  1. Match Me if You Can: Matchmaking Encryption and its Applications 2019 ABE Crypto eprint.iacr.org
    Giuseppe Ateniese and Danilo Francati and David Nuñez and Daniele Venturi

    We introduce a new form of encryption that we name matchmaking encryption (ME). Using ME, sender S and receiver R (each with its own attributes) can both specify policies the other party must satisfy in order for the message to be revealed. The main security guarantee is that of privacy-preserving policy matching: During decryption nothing is leaked beyond the fact that a match occurred/did not occur. ME opens up new ways of secretly communicating, and enables several new applications where both participants can specify fine-grained access policies to encrypted data. For instance, in social matchmaking, S can encrypt a file containing his/her personal details and specify a policy so that the file can be decrypted only by his/her ideal partner. On the other end, a receiver R will be able to decrypt the file only if S corresponds to his/her ideal partner defined through a policy. On the theoretical side, we define security for ME, as well as provide generic frameworks for constructing ME from functional encryption. These constructions need to face the technical challenge of simultaneously checking the policies chosen by S and R, to avoid any leakage. On the practical side, we construct an efficient identity-based scheme for equality policies, with provable security in the random oracle model under the standard BDH assumption. We implement and evaluate our scheme and provide experimental evidence that our construction is practical. We also apply identity-based ME to a concrete use case, in particular for creating an anonymous bulletin board over a Tor network.

  2. FAME: Fast Attribute-based Message Encryption 2017 ABE CCS Implementation Pairings acmccs.github.io
    Shashank Agrawal and Melissa Chase

    Time and again, attribute-based encryption has been shown to be the natural cryptographic tool for building various types of conditional access systems with far-reaching applications, but the deployment of such systems has been very slow. A central issue is the lack of an encryption scheme that can operate on sensitive data very efficiently and, at the same time, provides features that are important in practice.


    This paper proposes the first fully secure ciphertext-policy and key-policy ABE schemes based on a standard assumption on Type-III pairing groups, which do not put any restriction on policy type or attributes. We implement our schemes along with several other prominent ones using the Charm library, and demonstrate that they perform better on almost all parameters of interest.

  3. Attribute-Based Encryption in the Generic Group Model: Automated Proofs and New Constructions 2017 ABE CCS FormalVerification acmccs.github.io
    Miguel Ambrona, Gillis Barthe, Romain Gay, and Hoeteck Wee

    Attribute-based encryption (ABE) is a cryptographic primitive which supports fine-grained access control on encrypted data, making it an appealing building block for many applications. In this paper, we propose, implement, and evaluate fully automated methods for proving security of ABE in the Generic Bilinear Group Model (Boneh, Boyen, and Goh, 2005, Boyen, 2008), an idealized model which admits simpler and more efficient constructions, and can also be used to find attacks. Our method is applicable to Rational-Fraction Induced ABE, a large class of ABE that contains most of the schemes from the literature, and relies on a Master Theorem, which reduces security in the GGM to a (new) notion of symbolic security, which is amenable to automated verification using constraint-based techniques. We relate our notion of symbolic security for Rational-Fraction Induced ABE to prior notions for Pair Encodings. Finally, we present several applications, including automated proofs for new schemes.