Papers tagged as 2020
  1. The State of the Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribution 2020 Attacks EncryptedDatabases Oakland SearchableEncryption eprint.iacr.org
    Evgenios M. Kornaropoulos and Charalampos Papamanthou and Roberto Tamassia

    Recent foundational work on leakage-abuse attacks on encrypted databases has broadened our understanding of what an adversary can accomplish with a standard leakage profile. Nevertheless, all known value reconstruction attacks succeed under strong assumptions that may not hold in the real world. The most prevalent assumption is that queries are issued uniformly at random by the client. We present the first value reconstruction attacks that succeed without any knowledge about the query or data distribution. Our approach uses the search-pattern leakage, which exists in all known structured encryption schemes but has not been fully exploited so far. At the core of our method lies a support size estimator, a technique that utilizes the repetition of search tokens with the same response to estimate distances between encrypted values without any assumptions about the underlying distribution. We develop distribution-agnostic reconstruction attacks for both range queries and k-nearest neighbor (k-NN) queries based on information extracted from the search-pattern leakage. Our new range attack follows a different algorithmic approach than state-of-the-art attacks, which are fine-tuned to succeed under the uniformly distributed queries. Instead, we reconstruct plaintext values under a variety of skewed query distributions and even outperform the accuracy of previous approaches under the uniform query distribution. Our new k-NN attack succeeds with far fewer samples than previous attacks and scales to much larger values of k. We demonstrate the effectiveness of our attacks by experimentally testing them on a wide range of query distributions and database densities, both unknown to the adversary.

  2. Protecting the 4G and 5G Cellular Paging Protocols against Security and Privacy Attacks 2020 CellularProtocols PETS petsymposium.org
    Ankush Singla, Syed Rafiul Hussain, Omar Chowdhury, Elisa Bertino, Ninghui Li

    This paper focuses on protecting the cellular paging protocol — which balances between the quality-of-service and battery consumption of a device— against security and privacy attacks. Attacks against this protocol can have severe repercussions, for instance,allowing attacker to infer a victim’s location, leak a victim’s IMSI, and inject fabricated emergency alerts.To secure the protocol, we first identify the underlying design weaknesses enabling such attacks and then pro-pose efficient and backward-compatible approaches to address these weaknesses. We also demonstrate the deployment feasibility of our enhanced paging protocol by implementing it on an open-source cellular protocol library and commodity hardware. Our evaluation demonstrates that the enhanced protocol can thwart attacks without incurring substantial overhead.

  3. Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols 2020 Bluetooth PETS WirelessProtocols petsymposium.org
    Guillaume Celosia, Mathieu Cunche

    Apple Continuity protocols are the underlying network component of Apple Continuity services which allow seamless nearby applications such as activity and file transfer, device pairing and sharing a network connection. Those protocols rely on Bluetooth Low Energy (BLE) to exchange information between devices: Apple Continuity messages are embedded in the pay-load of BLE advertisement packets that are periodically broadcasted by devices. Recently, Martin et al. identified [1] a number of privacy issues associated with Apple Continuity protocols; we show that this was just the tip of the iceberg and that Apple Continuity protocols leak a wide range of personal information. In this work, we present a thorough reverse engineering of Apple Continuity protocols that we use to uncover a collection of privacy leaks. We introduce new artifacts, including identifiers, counters and battery levels, that can be used for passive tracking, and describe a novel active tracking attack based on Handoff messages. Beyond tracking issues, we shed light on severe privacy flaws. First, in addition to the trivial exposure of device characteristics and status, we found that HomeKit accessories betray human activities in a smarthome. Then, we demonstrate that AirDrop and Nearby Action protocols can be leveraged by passive observers to recover e-mail addresses and phone numbers of users. Finally, we exploit passive observations on the advertising traffic to infer Siri voice commands of a user.

  4. Computation on Encrypted Data using Dataflow Authentication 2020 AuthenticatedEncryption PETS petsymposium.org
    Andreas Fischer, Benny Fuhry, Florian Kerschbaum, and Eric Bodden

    Encrypting data before sending it to the cloud protects it against hackers and malicious insiders, but requires the cloud to compute on encrypted data. Trusted (hardware) modules, e.g., secure enclaves like Intel’s SGX, can very efficiently run entire programs in encrypted memory. However, it already has been demonstrated that software vulnerabilities give an attacker ample opportunity to insert arbitrary code into the program. This code can then modify the data flow of the program and leak any secret in the program to an observer in the cloud via SGX side-channels. Since any larger program is rife with software vulnerabilities, it is not a good idea to outsource entire programs to an SGX enclave. A secure alternative with a small trusted code base would be fully homomorphic encryption (FHE) – the holy grail of encrypted computation. However, due to its high computational complexity it is unlikely to be adopted in the near future. As a result researchers have made several proposals for transforming programs to perform encrypted computations on less powerful encryption schemes. Yet, current approaches fail on programs that make control-flow decisions based on encrypted data. In this paper, we introduce the concept of data flow authentication (DFAuth). DFAuth prevents an adversary from arbitrarily deviating from the data flow of a program. Hence, an attacker cannot perform an attack as outlined before on SGX. This enables that all programs, even those including operations on control-flow decision variables, can be computed on encrypted data. We implemented DFAuth using a novel authenticated homomorphic encryption scheme, a Java bytecode-to-bytecode compiler producing fully executable programs, and SGX enclaves. A transformed neural network that performs machine learning on sensitive medical data can be evaluated on encrypted inputs and encrypted weights in 0.86 seconds.

  5. HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments 2020 IntelSGX SideChannels Usenix usenix.org
    Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi

    Modern multi-core processors share cache resources for maximum cache utilization and performance gains. However, this leaves the cache vulnerable to side-channel attacks, where inherent timing differences in shared cache behavior are exploited to infer information on the victim’s execution patterns, ultimately leaking private information such as a secret key. The root cause for these attacks is mutually distrusting processes sharing the cache entries and accessing them in a deterministic and consistent manner. Various defenses against cache side-channel attacks have been proposed. However, they suffer from serious shortcomings: they either degrade performance significantly, impose impractical restrictions, or can only defeat certain classes of these attacks. More importantly, they assume that side-channel-resilient caches are required for the entire execution workload and do not allow the possibility to selectively enable the mitigation only for the security-critical portion of the workload.


    We present a generic mechanism for a flexible and soft partitioning of set-associative caches and propose a hybrid cache architecture, called HybCache. HybCache can be configured to selectively apply side-channel-resilient cache behavior only for isolated execution domains, while providing the non-isolated execution with conventional cache behavior, capacity and performance. An isolation domain can include one or more processes, specific portions of code, or a Trusted Execution Environment (e.g., SGX or TrustZone). We show that, with minimal hardware modifications and kernel support, HybCache can provide side-channel-resilient cache only for isolated execution with a performance overhead of 3.5–5%, while incurring no performance overhead for the remaining execution workload. We provide a simulator-based and hardware implementation of HybCache to evaluate the performance and area overheads, and show how HybCache mitigates typical access-based and contention-based cache attacks

  6. Delphi: A Cryptographic Inference Service for Neural Networks 2020 MachineLearning Privacy Usenix usenix.org
    Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa

    Many companies provide neural network prediction services to users for a wide range of applications. However, current prediction systems compromise one party’s privacy: either the user has to send sensitive inputs to the service provider for classification, or the service provider must store its proprietary neural networks on the user’s device. The former harms the personal privacy of the user, while the latter reveals the service provider’s proprietary model.


    We design, implement, and evaluate Delphi, a secure prediction system that allows two parties to run a neural network inference without revealing either party’s data. Delphi approaches the problem by simultaneously co-designing cryptography and machine learning. We first design a hybrid cryptographic protocol that improves upon the communication and computation costs over prior work. Second, we develop a planner that automatically generates neural network architecture configurations that navigate the performance-accuracy trade-offs of our hybrid protocol. Together, these techniques allow us to achieve a 22x improvement in prediction latency compared to the state-of-the-art prior work.

  7. Civet: An Efficient Java Partitioning Framework for Hardware Enclaves 2020 IntelSGX Usenix usenix.org
    Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa, Donald E. Porter

    Hardware enclaves are designed to execute small pieces of sensitive code or to operate on sensitive data, in isolation from larger, less trusted systems. Partitioning a large, legacy application requires significant effort. Partitioning an application written in a managed language, such as Java, is more challenging because of mutable language characteristics, extensive code reachability in class libraries, and the inevitability of using a heavyweight runtime.


    Civet is a framework for partitioning Java applications into enclaves. Civet reduces the number of lines of code in the enclave and uses language-level defenses, including deep type checks and dynamic taint-tracking, to harden the enclave interface. Civet also contributes a partitioned Java runtime design, including a garbage collection design optimized for the peculiarities of enclaves. Civet is efficient for data-intensive workloads; partitioning a Hadoop mapper reduces the enclave overhead from 10× to 16–22% without taint-tracking or 70–80% with taint-tracking.