1. SPAR Pilot Evaluation 2015 EncryptedDatabases apps.dtic.mil
    Benjamin Fuller, Darby Mitchell, Robert Cunningham, Uri Blumenthal, Patrick Cable, Ariel Hamlin, Lauren Milechin, Mark Rabe, Nabil Schear Richard Shay Mayank Varia Sophia Yakoubov Arkady Yerukhimovich

  2. Breach-Resistant Structured Encryption 2019 EncryptedDatabases PETS SearchableEncryption eprint.iacr.org
    Ghous Amjad, Seny Kamara, Tarik Moataz

    Motivated by the problem of data breaches, we formalize a notion of security for dynamic structured encryption (STE) schemes that guarantees security against a snapshot adversary; that is, an adversary that receives a copy of the encrypted structure at various times but does not see the transcripts related to any queries. In particular, we focus on the construction of dynamic encrypted multi-maps which are used to build efficient searchable symmetric encryption schemes, graph encryption schemes and encrypted relational databases. Interestingly, we show that a form of snapshot security we refer to as breach resistance implies previously-studied notions such as a (weaker version) of history independence and write-only obliviousness. Moreover, we initiate the study of dual-secure dynamic STE constructions: schemes that are forward-private against a persistent adversary and breach-resistant against a snapshot adversary. The notion of forward privacy guarantees that updates to the encrypted structure do not reveal their association to any query made in the past. As a concrete instantiation, we propose a new dual-secure dynamic multi-map encryption scheme that outperforms all existing constructions; including schemes that are not dual-secure. Our construction has query complexity that grows with the selectivity of the query and the number of deletes since the client executed a linear-time rebuild protocol which can be de-amortized. We implemented our scheme (with the de-amortized rebuild protocol) and evaluated its concrete efficiency empirically. Our experiments show that it is highly efficient with queries taking less than 1 microsecond per label/value pair.

  3. Revisiting Leakage Abuse Attacks 2019 Attacks EncryptedDatabases SearchableEncryption eprint.iacr.org
    Laura Blackstone, Seny Kamara, Tarik Moataz

    Encrypted search algorithms (ESA) are cryptographic algorithms that support search over encrypted data. ESAs can be designed with various primitives including searchable/structured symmetric encryption (SSE/STE) and oblivious RAM (ORAM). Leakage abuse attacks attempt to recover client queries using knowledge of the client’s data. An important parameter for any leakage-abuse attack is its known-data rate; that is, the fraction of client data that must be known to the adversary.


    In this work, we revisit leakage abuse attacks in several ways. We first highlight some practical limitations and assumptions underlying the well-known IKK (Islam et al. NDSS ’12) and Count (Cash et al., CCS ’15) attacks. We then design four new leakage-abuse attacks that rely on much weaker assumptions. Three of these attacks are volumetric in the sense that they only exploit leakage related to document sizes. In particular, this means that they work not only on SSE/STE-based ESAs but also against ORAM-based solutions. We also introduce two volumetric injection attack which use adversarial file additions to recover queries even from ORAM-based solutions. As far as we know, these are the first attacks of their kind.


    We evaluated all our attacks empirically and considered many experimental settings including different data collections, query selectivities, known-data rates, query space size and composition. From our experiments, we observed that the only setting that resulted in reasonable recovery rates under practical assumptions was the case of high-selectivity queries with a leakage profile that includes the response identity pattern (i.e., the identifiers of the matching documents) and the volume pattern (i.e., the size of the matching documents). All other attack scenarios either failed or relied on unrealistic assumptions (e.g., very high known-data rates). For this specific setting, we propose several suggestions and countermeasures including the use of schemes like PBS (Kamara et al, CRYPTO ’18), VLH/AVLH (Kamara and Moataz, Eurocrypt ’19 ), or the use of padding techniques like the ones recently proposed by Bost and Fouque (Bost and Fouque, IACR ePrint 2017/1060).