1. SmartVerif: Push the Limit of Automation Capability of Verifying Security Protocols by Dynamic Strategies 2020 FormalVerification Usenix usenix.org
    Yan Xiong, Cheng Shu, Wenchao Hung, Fuyou Miao, Wansen Wang, and Hengyi Ouyang

    Current formal approaches have been successfully used to find design flaws in many security protocols. However, it is still challenging to automatically analyze protocols due to their large or infinite state spaces. In this paper, we propose SmartVerif, a novel and general framework that pushes the limit of automation capability of state-of-the-art verification approaches. The primary technical contribution is the dynamic strategy inside SmartVerif, which can be used to smartly search proof paths. Different from the non-trivial and error-prone design of existing static strategies, the design of our dynamic strategy is simple and flexible: it can automatically optimize itself according to the security protocols without any human intervention. With the optimized strategy, SmartVerif can localize and prove supporting lemmata, which leads to higher probability of success in verification. The insight of designing the strategy is that the node representing a supporting lemma is on an incorrect proof path with lower probability, when a random strategy is given. Hence, we implement the strategy around the insight by introducing a reinforcement learning algorithm. We also propose several methods to deal with other technical problems in implementing SmartVerif. Experimental results show that SmartVerif can automatically verify all security protocols studied in this paper. The case studies also validate the efficiency of our dynamic strategy.

  2. Big Numbers - Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA Implementations 2020 Attacks Implementation SideChannels Signatures Usenix usenix.org
    Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer

    Side-channel attacks exploiting (EC)DSA nonce leakage easily lead to full key recovery. Although (EC)DSA implementations have already been hardened against side-channel leakage using the constant-time paradigm, the long-standing cat-and-mouse-game of attacks and patches continues. In particular, current code review is prone to miss less obvious side channels hidden deeply in the call stack. To solve this problem, a systematic study of nonce leakage is necessary. We present a systematic analysis of nonce leakage in cryptographic implementations. In particular, we expand DATA, an open-source side-channel analysis framework, to detect nonce leakage. Our analysis identified multiple unknown nonce leakage vulnerabilities across all essential computation steps involving nonces. Among others, we uncover inherent problems in Bignumber implementations that break claimed constant-time guarantees of (EC)DSA implementations if secrets are close to a word boundary. We found that lazy resizing of Bignumbers in OpenSSL and LibreSSL yields a highly accurate and easily exploitable side channel, which has been acknowledged with two CVEs. Surprisingly, we also found a tiny but expressive leakage in the constant-time scalar multiplication of OpenSSL and BoringSSL. Moreover, in the process of reporting and patching, we identified newly introduced leakage with the support of our tool, thus preventing another attack-patch cycle. We open-source our tool, together with an intuitive graphical user interface we developed.

  3. TPM-Fail: TPM meets Timing and Lattice Attacks 2020 Hardware Lattices SideChannels Signatures Usenix tpm.fail
    Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger

    Trusted Platform Module (TPM) serves as a hardware-based root of trust that protects cryptographic keys from privileged system and physical adversaries. In this work, we per-form a black-box timing analysis of TPM 2.0 devices deployed on commodity computers. Our analysis reveals thatsome of these devices feature secret-dependent execution times during signature generation based on elliptic curves. In particular, we discovered timing leakage on an Intel firmware-based TPM as well as a hardware TPM. We show how this information allows an attacker to apply lattice techniques torecover 256-bit private keys for ECDSA and EC Schnorr signatures. On Intel fTPM, our key recovery succeeds after about1,300 observations and in less than two minutes. Similarly, weextract the private ECDSA key from a hardware TPM manufactured by STMicroelectronics, which is certified at Common Criteria (CC) EAL 4+, after fewer than 40,000 observations.We further highlight the impact of these vulnerabilities by demonstrating a remote attack against a StrongSwan IPsecVPN that uses a TPM to generate the digital signatures for authentication. In this attack, the remote client recovers the server’s private authentication key by timing only 45,000authentication handshakes via a network connection.The vulnerabilities we have uncovered emphasize the difficulty of correctly implementing known constant-time techniques, and show the importance of evolutionary testing and transparent evaluation of cryptographic implementations.Even certified devices that claim resistance against attacks require additional scrutiny by the community and industry, as we learn more about these attacks.

  4. Practical Multi-party Private Set Intersection from Symmteric-Key Techniques 2017 CCS MPC PSI acmccs.github.io
    Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu

    We present a new paradigm for multi-party private set intersection (PSI) that allows $n$ parties to compute the intersection of their datasets without revealing any additional information. We explore a variety of instantiations of this paradigm. Our protocols avoid computationally expensive public-key operations and are secure in the presence of any number of semi-honest participants (i.e., without an honest majority).


    We demonstrate the practicality of our protocols with an implementation. To the best of our knowledge, this is the first implementation of a multi-party PSI protocol. For 5 parties with data-sets of 220 items each, our protocol requires only 72 seconds. In an optimization achieving a slightly weaker variant of security (augmented semi-honest model), the same task requires only 22 seconds.


    The technical core of our protocol is oblivious evaluation of a programmable pseudorandom function (OPPRF), which we instantiate in three different ways. We believe our new OPPRF abstraction and constructions may be of independent interest.

  5. Malicious Secure Private Set Intersection via Dual Execution 2017 CCS Implementation PSI acmccs.github.io
    Peter Rindal and Mike Rosulek

    Private set intersection (PSI) allows two parties, who each hold a set of items, to compute the intersection of those sets without revealing anything about other items. Recent advances in PSI have significantly improved its performance for the case of semi-honest security, making semi-honest PSI a practical alternative to insecure methods for computing intersections. However, the semi-honest security model is not always a good fit for real-world problems.


    In this work we introduce a new PSI protocol that is secure in the presence of malicious adversaries. Our protocol is based entirely on fast symmetric-key primitives and inherits important techniques from state-of-the-art protocols in the semi-honest setting. Our novel technique to strengthen the protocol for malicious adversaries is inspired by the dual execution technique of Mohassel & Franklin (PKC 2006). Our protocol is optimized for the random-oracle model, but can also be realized (with a performance penalty) in the standard model.


    We demonstrate our protocol’s practicality with a prototype implementation. To securely compute the intersection of two sets of size 220 requires only 13 seconds with our protocol, which is ~12x faster than the previous best malicious-secure protocol (Rindal & Rosulek, Eurocrypt 2017), and only 3x slower than the best semi-honest protocol (Kolesnikov et al., CCS 2016).

  6. Fast Private Set Intersection from Homorphic Encryption 2017 CCS PSI acmccs.github.io
    Hao Chen, Kim Laine, and Peter Rindal

    Private Set Intersection (PSI) is a cryptographic technique that allows two parties to compute the intersection of their sets without revealing anything except the intersection. We use fully homomorphic encryption to construct a fast PSI protocol with a small communication overhead that works particularly well when one of the two sets is much smaller than the other, and is secure against semi-honest adversaries.


    The most computationally efficient PSI protocols have been constructed using tools such as hash functions and oblivious transfer, but a potential limitation with these approaches is the communication complexity, which scales linearly with the size of the larger set. This is of particular concern when performing PSI between a constrained device (cellphone) holding a small set, and a large service provider (e.g. WhatsApp), such as in the Private Contact Discovery application.


    Our protocol has communication complexity linear in the size of the smaller set, and logarithmic in the larger set. More precisely, if the set sizes are Ny < Nx, we achieve a communication overhead of O(Ny log Nx). Our running-time-optimized benchmarks show that it takes 36 seconds of online-computation, 71 seconds of non-interactive (receiver-independent) pre-processing, and only 12.5MB of round trip communication to intersect five thousand 32-bit strings with 16 million 32-bit strings. Compared to prior works, this is roughly a 38–115x reduction in communication with minimal difference in computational overhead.

  7. Practical Graphs for Optimal Side-Channel Resistant Memory Hard Functions 2017 CCS Hashing Implementation eprint.iacr.org
    Joel Alwen, Jeremiah Blocki, and Ben Harsha

    A memory-hard function (MHF) ƒn with parameter n can be computed in sequential time and space n. Simultaneously, a high amortized parallel area-time complexity (aAT) is incurred per evaluation. In practice, MHFs are used to limit the rate at which an adversary (using a custom computational device) can evaluate a security sensitive function that still occasionally needs to be evaluated by honest users (using an off-the-shelf general purpose device). The most prevalent examples of such sensitive functions are Key Derivation Functions (KDFs) and password hashing algorithms where rate limits help mitigate off-line dictionary attacks. As the honest users’ inputs to these functions are often (low-entropy) passwords special attention is given to a class of side-channel resistant MHFs called iMHFs.


    Essentially all iMHFs can be viewed as some mode of operation (making n calls to some round function) given by a directed acyclic graph (DAG) with very low indegree. Recently, a combinatorial property of a DAG has been identified (called “depth-robustness”) which results in good provable security for an iMHF based on that DAG. Depth-robust DAGs have also proven useful in other cryptographic applications. Unfortunately, up till now, all known very depth-robust DAGs are impractically complicated and little is known about their exact (i.e. non-asymptotic) depth-robustness both in theory and in practice.


    In this work we build and analyze (both formally and empirically) several exceedingly simple and efficient to navigate practical DAGs for use in iMHFs and other applications. For each DAG we:
    Prove that their depth-robustness is asymptotically maximal.
    Prove bounds of at least 3 orders of magnitude better on their exact depth-robustness compared to known bounds for other practical iMHF.
    Implement and empirically evaluate their depth-robustness and aAT against a variety of state-of-the art (and several new) depth-reduction and low aAT attacks. We find that, against all attacks, the new DAGs perform significantly better in practice than Argon2i, the most widely deployed iMHF in practice.


    Along the way we also improve the best known empirical attacks on the aAT of Argon2i by implementing and testing several heuristic versions of a (hitherto purely theoretical) depth-reduction attack. Finally, we demonstrate practicality of our constructions by modifying the Argon2i code base to use one of the new high aAT DAGs. Experimental benchmarks on a standard off-the-shelf CPU show that the new modifications do not adversely affect the impressive throughput of Argon2i (despite seemingly enjoying significantly higher aAT).

  8. T/Key: Second-Factor Authentication From Secure Hash Chains 2017 CCS Hashing Implementation acmccs.github.io
    Dmitry Kogan, Nathan Manohar, and Dan Boneh

    Time-based one-time password (TOTP) systems in use today require storing secrets on both the client and the server. As a result, an attack on the server can expose all second factors for all users in the system. We present T/Key, a time-based one-time password system that requires no secrets on the server. Our work modernizes the classic S/Key system and addresses the challenges in making such a system secure and practical. At the heart of our construction is a new lower bound analyzing the hardness of inverting hash chains composed of independent random functions, which formalizes the security of this widely used primitive. Additionally, we develop a near-optimal algorithm for quickly generating the required elements in a hash chain with little memory on the client. We report on our implementation of T/Key as an Android application. T/Key can be used as a replacement for current TOTP systems, and it remains secure in the event of a server-side compromise. The cost, as with S/Key, is that one-time passwords are longer than the standard six characters used in TOTP.

  9. Generic Semantic Security against a Kleptographic Adversary 2017 CCS Kleptography acmccs.github.io
    Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou

    Notable recent security incidents have generated intense interest in adversaries which attempt to subvert—perhaps covertly—crypto-graphic algorithms. In this paper we develop (IND-CPA) Semantically Secure encryption in this challenging setting. This fundamental encryption primitive has been previously studied in the “kleptographic setting,” though existing results must relax the model by introducing trusted components or otherwise constraining the subversion power of the adversary: designing a Public Key System that is kletographically semantically secure (with minimal trust) has remained elusive to date. In this work, we finally achieve such systems, even when all relevant cryptographic algorithms are subject to adversarial (kleptographic) subversion. To this end we exploit novel inter-component randomized cryptographic checking techniques (with an offline checking component), combined with common and simple software engineering modular programming techniques (applied to the system’s black box specification level). Moreover, our methodology yields a strong generic technique for the preservation of any semantically secure cryptosystem when incorporated into the strong kleptographic adversary setting.

  10. Better Than Advertised: Improved Collision-Resistance Guarantees for MD-Based Hash Functions 2017 CCS Hashing acmccs.github.io
    Mihir Bellare, Joseph Jaeger, and Julia Len

    The MD transform that underlies the MD and SHA families iterates a compression function h to get a hash function H. The question we ask is, what property X of h guarantees collision resistance (CR) of H? The classical answer is that X itself be CR. We show that weaker conditions X, in particular forms of what we call constrained-CR, suffice. This reduces demands on compression functions, to the benefit of security, and also, forensically, explains why collision-finding attacks on compression functions have not, historically, lead to immediate breaks of the corresponding hash functions. We obtain our results via a definitional framework called RS security, and a parameterized treatment of MD, that also serve to unify prior work and variants of the transform.

  11. Stacco: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves 2017 Attacks CCS IntelSGX SideChannels TLS acmccs.github.io
    Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang

    Intel Software Guard Extension (SGX) offers software applications a shielded execution environment, dubbed enclave, to protect their confidentiality and integrity from malicious operating systems. As processors with this extended feature become commercially available, many new software applications are developed to enrich to the SGX-enabled ecosystem. One important primitive for these applications is a secure communication channel between the enclave and a remote trusted party. The SSL/TLS protocol, which is the de facto standard for protecting transport-layer network communications, has been broadly regarded a natural choice for such purposes. However, in this paper, we show that the marriage between SGX and SSL may not be smooth sailing.


    Particularly, we consider a category of side-channel attacks against SSL/TLS implementations in secure enclaves, which we call the control-flow inference attacks. In these attacks, the malicious operating system kernel may perform a powerful man-in-the-kernel attack to collect execution traces of the enclave programs at the page level, the cacheline level, or the branch level, while positioning itself in the middle of the two communicating parties. At the center of our work is a differential analysis framework, dubbed Stacco, to dynamically analyze the SSL/TLS implementations and detect vulnerabilities-discernible execution traces-that can be exploited as decryption oracles. Surprisingly, in spite of the prevailing constant-time programming paradigm adopted by many cryptographic libraries, we found exploitable vulnerabilities in the latest versions of all the SSL/TLS libraries we have examined.


    To validate the detected vulnerabilities, we developed a man-in-the-kernel adversary to demonstrate Bleichenbacher attacks against the latest OpenSSL library running in the SGX enclave (with the help of Graphene) and completely broke the PreMasterSecret encrypted by a 4096-bit RSA public key with only 57286 queries. We also conducted CBC padding oracle attacks against the latest GnuTLS running in Graphene-SGX and an open-source SGX implementation of mbedTLS (i.e., mbedTLS-SGX) that runs directly inside the enclave, and showed that it only needs 48388 and 25717 queries, respectively, to break one block of AES ciphertext. Empirical evaluation suggests these man-in-the-kernel attacks can be completed within 1 or 2 hours. Our results reveal the insufficient understanding of side-channel security in SGX settings, and our study will provoke discussions on the secure implementation and adoption of SSL/TLS in secure enclaves.

  12. Implementing BP-Obfuscation Using Graph-Induced Encoding 2017 CCS Implementation Lattices Obfuscation acmccs.github.io
    Shai Halevi, Tzipora Halevi, Victor Shoup and Noah Stephens-Davidowitz

    We implemented (a simplified version of) the branching-program obfuscator due to Gentry et al. (GGH15), which is itself a variation of the first obfuscation candidate by Garg et al. (GGHRSW13). To keep within the realm of feasibility, we had to give up on some aspects of the construction, specifically the “multiplicative bundling” factors that protect against mixed-input attacks. Hence our implementation can only support read-once branching programs.


    To be able to handle anything more than just toy problems, we developed a host of algorithmic and code-level optimizations. These include new variants of discrete Gaussian sampler and lattice trapdoor sampler, efficient matrix-manipulation routines, and many tradeoffs. We expect that these optimizations will find other uses in lattice-based cryptography beyond just obfuscation.


    Our implementation is the first obfuscation attempt using the GGH15 graded encoding scheme, offering performance advantages over other graded encoding methods when obfuscating finite-state machines with many states. In out most demanding setting, we were able to obfuscate programs with input length of 20 nibbles (80 bits) and over 100 states, which seems out of reach for prior implementations. Although further optimizations are surely possible, we do not expect any implementation of current schemes to be able to handle much larger parameters.

  13. Iron: Functional Encryption using Intel SGX 2017 CCS FE IntelSGX acmccs.github.io
    Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov

    Functional encryption (FE) is an extremely powerful cryptographic mechanism that lets an authorized entity compute on encrypted data, and learn the results in the clear. However, all current cryptographic instantiations for general FE are too impractical to be implemented. We construct IRON, a provably secure, and practical FE system using Intel’s recent Software Guard Extensions (SGX). We show that IRON can be applied to complex functionalities, and even for simple functions, outperforms the best known cryptographic schemes. We argue security by modeling FE in the context of hardware elements, and prove that IRON satisfies the security model.

  14. 5Gen-C: Multi-input Functional Encryption and Program Obfuscation for Arithmetic Circuits 2017 CCS Implementation Obfuscation acmccs.github.io
    Brent Carmer, Alex J. Malozemoff, and Mariana Raykova

    Program obfuscation is a powerful security primitive with many applications. White-box cryptography studies a particular subset of program obfuscation targeting keyed pseudorandom functions (PRFs), a core component of systems such as mobile payment and digital rights management. Although the white-box obfuscators currently used in practice do not come with security proofs and are thus routinely broken, recent years have seen an explosion of cryptographic techniques for obfuscation, with the goal of avoiding this build-and-break cycle.


    In this work, we explore in detail cryptographic program obfuscation and the related primitive of multi-input functional encryption (MIFE). In particular, we extend the 5Gen framework (CCS 2016) to support circuit-based MIFE and program obfuscation, implementing both existing and new constructions. We then evaluate and compare the efficiency of these constructions in the context of PRF obfuscation.


    As part of this work we (1) introduce a novel instantiation of MIFE that works directly on functions represented as arithmetic circuits, (2) use a known transformation from MIFE to obfuscation to give us an obfuscator that performs better than all prior constructions, and (3) develop a compiler for generating circuits optimized for our schemes. Finally, we provide detailed experiments, demonstrating, among other things, the ability to obfuscate a PRF with a 64-bit key and 12 bits of input (containing 62k gates) in under 4 hours, with evaluation taking around 1 hour. This is by far the most complex function obfuscated to date.

  15. May the Fourth Be With You: A Microarchitectural Side Channel Attack on Several Real-World Applications of Curve25519 Attacks Diffie-Hellman SideChannels acmccs.github.io
    Daniel Genkin, Luke Valenta, and Yuval Yarom

    In recent years, applications increasingly adopt security primitives designed with better countermeasures against side channel attacks. A concrete example is Libgcrypt’s implementation of ECDH encryption with Curve25519. The implementation employs the Montgomery ladder scalar-by-point multiplication, uses the unified, branchless Montgomery double-and-add formula and implements a constant-time argument swap within the ladder. However, Libgcrypt’s field arithmetic operations are not implemented in a constant-time side-channel-resistant fashion.


    Based on the secure design of Curve25519, users of the curve are advised that there is no need to perform validation of input points. In this work we demonstrate that when this recommendation is followed, the mathematical structure of Curve25519 facilitates the exploitation of side-channel weaknesses.


    We demonstrate the effect of this vulnerability on three software applications—encrypted git, email and messaging—that use Libgcrypt. In each case, we show how to craft malicious OpenPGP files that use the Curve25519 point of order 4 as a chosen ciphertext to the ECDH encryption scheme. We find that the resulting interactions of the point at infinity, order-2, and order-4 elements in the Montgomery ladder scalar-by-point multiplication routine create side channel leakage that allows us to recover the private key in as few as 11 attempts to access such malicious files.

  16. Solidus: Confidential Distributed Ledger Transactions via PVORAM 2017 Blockchains CCS Implementation ORAM eprint.iacr.org
    Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi

    Blockchains and more general distributed ledgers are becoming increasingly popular as efficient, reliable, and persistent records of data and transactions. Unfortunately, they ensure reliability and correctness by making all data public, raising confidentiality concerns that eliminate many potential uses.


    In this paper we present Solidus, a protocol for confidential transactions on public blockchains, such as those required for asset transfers with on-chain settlement. Solidus operates in a framework based on real-world financial institutions: a modest number of banks each maintain a large number of user accounts. Within this framework, Solidus hides both transaction values and the transaction graph (i.e., the identities of transacting entities) while maintaining the public verifiability that makes blockchains so appealing. To achieve strong confidentiality of this kind, we introduce the concept of a Publicly-Verifiable Oblivious RAM Machine (PVORM). We present a set of formal security definitions for both PVORM and Solidus and show that our constructions are secure. Finally, we implement Solidus and present a set of benchmarks indicating that the system is efficient in practice.

  17. Practical UC-Secure Delegatable Credentials with Attributes and Their Application to Blockchain 2017 AnonymousCredentials Blockchains CCS UC acmccs.github.io
    Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya

    Certification of keys and attributes is in practice typically realized by a hierarchy of issuers. Revealing the full chain of issuers for certificate verification, however, can be a privacy issue since it can leak sensitive information about the issuer’s organizational structure or about the certificate owner. Delegatable anonymous credentials solve this problem and allow one to hide the full delegation (issuance) chain, providing privacy during both delegation and presentation of certificates. However, the existing delegatable credentials schemes are not efficient enough for practical use.


    In this paper, we present the first hierarchical (or delegatable) anonymous credential system that is practical. To this end, we provide a surprisingly simple ideal functionality for delegatable credentials and present a generic construction that we prove secure in the UC model. We then give a concrete instantiation using a recent pairing-based signature scheme by Groth and describe a number of optimizations and efficiency improvements that can be made when implementing our concrete scheme. The latter might be of independent interest for other pairing-based schemes as well. Finally, we report on an implementation of our scheme in the context of transaction authentication for blockchain, and provide concrete performance figures.

  18. FAME: Fast Attribute-based Message Encryption 2017 ABE CCS Implementation Pairings acmccs.github.io
    Shashank Agrawal and Melissa Chase

    Time and again, attribute-based encryption has been shown to be the natural cryptographic tool for building various types of conditional access systems with far-reaching applications, but the deployment of such systems has been very slow. A central issue is the lack of an encryption scheme that can operate on sensitive data very efficiently and, at the same time, provides features that are important in practice.


    This paper proposes the first fully secure ciphertext-policy and key-policy ABE schemes based on a standard assumption on Type-III pairing groups, which do not put any restriction on policy type or attributes. We implement our schemes along with several other prominent ones using the Charm library, and demonstrate that they perform better on almost all parameters of interest.

  19. Attribute-Based Encryption in the Generic Group Model: Automated Proofs and New Constructions 2017 ABE CCS FormalVerification acmccs.github.io
    Miguel Ambrona, Gillis Barthe, Romain Gay, and Hoeteck Wee

    Attribute-based encryption (ABE) is a cryptographic primitive which supports fine-grained access control on encrypted data, making it an appealing building block for many applications. In this paper, we propose, implement, and evaluate fully automated methods for proving security of ABE in the Generic Bilinear Group Model (Boneh, Boyen, and Goh, 2005, Boyen, 2008), an idealized model which admits simpler and more efficient constructions, and can also be used to find attacks. Our method is applicable to Rational-Fraction Induced ABE, a large class of ABE that contains most of the schemes from the literature, and relies on a Master Theorem, which reduces security in the GGM to a (new) notion of symbolic security, which is amenable to automated verification using constraint-based techniques. We relate our notion of symbolic security for Rational-Fraction Induced ABE to prior notions for Pair Encodings. Finally, we present several applications, including automated proofs for new schemes.

  20. Scaling ORAM for Secure Computation 2017 2PC CCS Implementation ORAM acmccs.github.io
    Jack Doerner and abhi shelat

    We design and implement a Distributed Oblivious Random Access Memory (DORAM) data structure that is optimized for use in two-party secure computation protocols. We improve upon the access time of previous constructions by a factor of up to ten, their memory overhead by a factor of one hundred or more, and their initialization time by a factor of thousands. We are able to instantiate ORAMs that hold 234 bytes, and perform operations on them in seconds, which was not previously feasible with any implemented scheme.


    Unlike prior ORAM constructions based on hierarchical hashing, permutation, or trees, our Distributed ORAM is derived from the new Function Secret Sharing scheme introduced by Boyle, Gilboa and Ishai. This significantly reduces the amount of secure computation required to implement an ORAM access, albeit at the cost of O(n) efficient local memory operations.


    We implement our construction and find that, despite its poor O(n) asymptotic complexity, it still outperforms the fastest previously known constructions, Circuit ORAM and Square-root ORAM, for datasets that are 32 KiB or larger, and outperforms prior work on applications such as stable matching or binary search by factors of two to ten.

  21. Deterministic, Stash-Free Write-Only ORAM 2017 CCS Implementation ORAM acmccs.github.io
    Daniel S. Roche, Adam Aviv, Seung Geol Choi, and Travis Mayberry

    Write-Only Oblivious RAM (WoORAM) protocols provide privacy by encrypting the contents of data and also hiding the pattern of write operations over that data. WoORAMs provide better privacy than plain encryption and better performance than more general ORAM schemes (which hide both writing and reading access patterns), and the write-oblivious setting has been applied to important applications of cloud storage synchronization and encrypted hidden volumes. In this paper, we introduce an entirely new technique for Write-Only ORAM, called DetWoORAM. Unlike previous solutions, DetWoORAM uses a deterministic, sequential writing pattern without the need for any “stashing” of blocks in local state when writes fail. Our protocol, while conceptually simple, provides substantial improvement over prior solutions, both asymptotically and experimentally. In particular, under typical settings the DetWoORAM writes only 2 blocks (sequentially) to backend memory for each block written to the device, which is optimal. We have implemented our solution using the BUSE (block device in user-space) module and tested DetWoORAM against both an encryption only baseline of dm-crypt and prior, randomized WoORAM solutions, measuring only a 3x-14x slowdown compared to an encryption-only baseline and around 6x-19x speedup compared to prior work.

  22. S3ORAM: A Computation-Efficient and Constant Client Bandwidth Blowup ORAM with Shamir Secret Sharing 2017 CCS Implementation MPC ORAM SecretSharing acmccs.github.io
    Thang Hoang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam Nguyen

    Oblivious Random Access Machine (ORAM) enables a client to access her data without leaking her access patterns. Existing client-efficient ORAMs either achieve O(log N) client-server communication blowup without heavy computation, or O(1) blowup but with expensive homomorphic encryptions. It has been shown that O(log N) bandwidth blowup might not be practical for certain applications, while schemes with O(1) communication blowup incur even more delay due to costly homomorphic operations.


    In this paper, we propose a new distributed ORAM scheme referred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves O(1) client-server bandwidth blowup and O(1) blocks of client storage without relying on costly partial homomorphic encryptions. S3ORAM harnesses Shamir Secret Sharing, tree-based ORAM structure and a secure multi-party multiplication protocol to eliminate costly homomorphic operations and, therefore, achieves O(1) client-server bandwidth blowup with a high computational efficiency. We conducted comprehensive experiments to assess the performance of S3ORAM and its counterparts on actual cloud environments, and showed that S3ORAM achieves three orders of magnitude lower end-to-end delay compared to alternatives with O(1) client communication blowup (Onion-ORAM), while it is one order of magnitude faster than Path-ORAM for a network with a moderate bandwidth quality. We have released the implementation of S3ORAM for further improvement and adaptation.

  23. Bolt: Anonymous Payment Channels for Decentralized Currencies 2017 Blockchains CCS Implementation PaymentChannels acmccs.github.io
    Matthew Green and Ian Miers

    Bitcoin owes its success to the fact that transactions are transparently recorded in the blockchain, a global public ledger that removes the need for trusted parties. Unfortunately, recording every transaction in the blockchain causes privacy, latency, and scalability issues. Building on recent proposals for “micropayment channels” — two party associations that use the ledger only for dispute resolution — we introduce techniques for constructing anonymous payment channels. Our proposals allow for secure, instantaneous and private payments that substantially reduce the storage burden on the payment network. Specifically, we introduce three channel proposals, including a technique that allows payments via untrusted intermediaries. We build a concrete implementation of our scheme and show that it can be deployed via a soft fork to existing anonymous currencies such as ZCash.

  24. Concurrency and Privacy with Payment-Channel Networks 2017 Blockchains CCS UC acmccs.github.io
    Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan Ravi

    Permissionless blockchains protocols such as Bitcoin are inherently limited in transaction throughput and latency. Current efforts to address this key issue focus on off-chain payment channels that can be combined in a Payment-Channel Network (PCN) to enable an unlimited number of payments without requiring to access the blockchain other than to register the initial and final capacity of each channel. While this approach paves the way for low latency and high throughput of payments, its deployment in practice raises several privacy concerns as well as technical challenges related to the inherently concurrent nature of payments that have not been sufficiently studied so far. In this work, we lay the foundations for privacy and concurrency in PCNs, presenting a formal definition in the Universal Composability framework as well as practical and provably secure solutions. In particular, we present Fulgor and Rayo. Fulgor is the first payment protocol for PCNs that provides provable privacy guarantees for PCNs and is fully compatible with the Bitcoin scripting system. However, Fulgor is a blocking protocol and therefore prone to deadlocks of concurrent payments as in currently available PCNs. Instead, Rayo is the first protocol for PCNs that enforces non-blocking progress (i.e., at least one of the concurrent payments terminates). We show through a new impossibility result that non-blocking progress necessarily comes at the cost of weaker privacy. At the core of Fulgor and Rayo is Multi-Hop HTLC, a new smart contract, compatible with the Bitcoin scripting system, that provides conditional payments while reducing running time and communication overhead with respect to previous approaches. Our performance evaluation of Fulgor and Rayo shows that a payment with 10 intermediate users takes as few as 5 seconds, thereby demonstrating their feasibility to be deployed in practice.

  25. TypTop System: Personalized TypoTolerant Password Checking 2017 CCS Implementation Passwords acmccs.github.io
    Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and Thomas Ristenpart

    Password checking systems traditionally allow login only if the correct password is submitted. Recent work on typo-tolerant password checking suggests that usability can be improved, with negligible security loss, by allowing a small number of typographical errors. Existing systems, however, can only correct a handful of errors, such as accidentally leaving caps lock on or incorrect capitalization of the first letter in a password. This leaves out numerous kinds of typos made by users, such as transposition errors, substitutions, or capitalization errors elsewhere in a password. Some users therefore receive no benefit from existing typo-tolerance mechanisms.


    We introduce personalized typo-tolerant password checking. In our approach, the authentication system learns over time the typos made by a specific user. In experiments using Mechanical Turk, we show that 45% of users would benefit from personalization. Therefore, we design a system, called TypTop, that securely implements personalized typo-tolerance. Underlying TypTop is a new stateful password-based encryption scheme that can be used to store recent failed login attempts. Our formal analysis shows that security in the face of an attacker that obtains the state of the system reduces to the difficulty of a brute-force dictionary attack against the real password. We implement TypTop for Linux and Mac OS login and report on a proof-of-concept deployment.