1. Attacking GlobalPlatform SCP02-compliant Smart Cards Using a Padding Oracle Attack 2018 Attacks CHES Hardware tches.iacr.org
    Gildas Avoine, Loïc Ferreira

    We describe in this paper how to perform a padding oracle attack against
    the GlobalPlatform SCP02 protocol. SCP02 is implemented in smart cards and
    used by transport companies, in the banking world and by mobile network operators
    (UICC/SIM cards). The attack allows an adversary to efficiently retrieve plaintext
    bytes from an encrypted data field. We provide results of our experiments done
    with 10 smart cards from six different card manufacturers, and show that, in our
    experimental setting, the attack is fully practical. Given that billions SIM cards are
    produced every year, the number of affected cards, although difficult to estimate,
    is potentially high. To the best of our knowledge, this is the first successful attack
    against SCP02.

  2. The Honey Badger of BFT Protocols 2016 BFT Blockchains CCS eprint.iacr.org
    Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, Dawn Song

    The surprising success of cryptocurrencies has led to a surge of interest in deploying large scale, highly robust, Byzantine fault tolerant (BFT) proto- cols for mission-critical applications, such as finan- cial transactions. Although the conventional wisdom is to build atop a (weakly) synchronous protocol such as PBFT (or a variation thereof), such protocols rely critically on network timing assumptions, and only guarantee liveness when the network behaves as ex- pected. We argue these protocols are ill-suited for this deployment scenario.


    We present an alternative, HoneyBadgerBFT, the first practical asynchronous BFT protocol, which guarantees liveness without making any timing as- sumptions. We base our solution on a novel atomic broadcast protocol that achieves optimal asymptotic efficiency. We present an implementation and ex- perimental results to show our system can achieve throughput of tens of thousands of transactions per second, and scales to over a hundred nodes on a wide area network. We even conduct BFT experi- ments over Tor, without needing to tune any parame- ters. Unlike the alternatives, HoneyBadgerBFT sim- ply does not care about the underlying network.

  3. A Secure Sharding Protocol For Open Blockchains 2016 Blockchains CCS CryptocurrencyScaling people.cs.georgetown.edu
    Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, Prateek Saxena

    Cryptocurrencies, such as Bitcoin and 250 similar alt-coins, embody at their core a blockchain protocol — a mechanism for a distributed network of computational nodes to periodically agree on a set of new transactions. Designing a secure blockchain protocol relies on an open challenge in security, that of designing a highly-scalableagreement protocol open to manipulation by byzantine or arbitrarily malicious nodes. Bitcoin’s blockchain agreement protocol exhibits security, but does not scale: it processes 3–7 transactions per second at present, irrespective of the available computation capacity at hand.


    In this paper, we propose a new distributed agreement protocol for permission-less blockchains called ELASTICO. ELASTICO scales transaction rates almost linearly with available computation for mining: the more the computation power in the network, the higher the number of transaction blocks selected per unit time. ELASTICO is efficient in its network messages and tolerates byzantine adversaries of up to one-fourth of the total computational power. Technically, ELASTICO uniformly partitions or parallelizes the mining network (securely) into smaller committees, each of which processes a disjoint set of transactions (or “shards”). While sharding is common in non-byzantine settings, ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries. Our scalability experiments on Amazon EC2 with up to $1, 600$ nodes confirm ELASTICO’s theoretical scaling properties.

  4. On the Security and Performance of Proof of Work Blockchains 2016 Blockchains CCS ProofOfWork eprint.iacr.org
    Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, Srdjan Capkun

    Proof of Work (PoW) powered blockchains currently account for more than 90% of the total market capitalization of existing digital currencies. Although the security provisions of Bitcoin have been thoroughly analysed, the security guarantees of variant (forked) PoW blockchains (which were instantiated with different parameters) have not received much attention in the literature.


    In this paper, we introduce a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains. Based on our framework, we devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints such as network propagation, different block sizes, block generation intervals, information propagation mechanism, and the impact of eclipse attacks. Our framework therefore allows us to capture existing PoW-based deployments as well as PoW blockchain variants that are instantiated with different parameters, and to objectively compare the tradeoffs between their performance and security provisions.

  5. Breach-Resistant Structured Encryption 2019 EncryptedDatabases PETS SearchableEncryption eprint.iacr.org
    Ghous Amjad, Seny Kamara, Tarik Moataz

    Motivated by the problem of data breaches, we formalize a notion of security for dynamic structured encryption (STE) schemes that guarantees security against a snapshot adversary; that is, an adversary that receives a copy of the encrypted structure at various times but does not see the transcripts related to any queries. In particular, we focus on the construction of dynamic encrypted multi-maps which are used to build efficient searchable symmetric encryption schemes, graph encryption schemes and encrypted relational databases. Interestingly, we show that a form of snapshot security we refer to as breach resistance implies previously-studied notions such as a (weaker version) of history independence and write-only obliviousness. Moreover, we initiate the study of dual-secure dynamic STE constructions: schemes that are forward-private against a persistent adversary and breach-resistant against a snapshot adversary. The notion of forward privacy guarantees that updates to the encrypted structure do not reveal their association to any query made in the past. As a concrete instantiation, we propose a new dual-secure dynamic multi-map encryption scheme that outperforms all existing constructions; including schemes that are not dual-secure. Our construction has query complexity that grows with the selectivity of the query and the number of deletes since the client executed a linear-time rebuild protocol which can be de-amortized. We implemented our scheme (with the de-amortized rebuild protocol) and evaluated its concrete efficiency empirically. Our experiments show that it is highly efficient with queries taking less than 1 microsecond per label/value pair.

  6. Revisiting Leakage Abuse Attacks 2019 Attacks EncryptedDatabases SearchableEncryption eprint.iacr.org
    Laura Blackstone, Seny Kamara, Tarik Moataz

    Encrypted search algorithms (ESA) are cryptographic algorithms that support search over encrypted data. ESAs can be designed with various primitives including searchable/structured symmetric encryption (SSE/STE) and oblivious RAM (ORAM). Leakage abuse attacks attempt to recover client queries using knowledge of the client’s data. An important parameter for any leakage-abuse attack is its known-data rate; that is, the fraction of client data that must be known to the adversary.


    In this work, we revisit leakage abuse attacks in several ways. We first highlight some practical limitations and assumptions underlying the well-known IKK (Islam et al. NDSS ’12) and Count (Cash et al., CCS ’15) attacks. We then design four new leakage-abuse attacks that rely on much weaker assumptions. Three of these attacks are volumetric in the sense that they only exploit leakage related to document sizes. In particular, this means that they work not only on SSE/STE-based ESAs but also against ORAM-based solutions. We also introduce two volumetric injection attack which use adversarial file additions to recover queries even from ORAM-based solutions. As far as we know, these are the first attacks of their kind.


    We evaluated all our attacks empirically and considered many experimental settings including different data collections, query selectivities, known-data rates, query space size and composition. From our experiments, we observed that the only setting that resulted in reasonable recovery rates under practical assumptions was the case of high-selectivity queries with a leakage profile that includes the response identity pattern (i.e., the identifiers of the matching documents) and the volume pattern (i.e., the size of the matching documents). All other attack scenarios either failed or relied on unrealistic assumptions (e.g., very high known-data rates). For this specific setting, we propose several suggestions and countermeasures including the use of schemes like PBS (Kamara et al, CRYPTO ’18), VLH/AVLH (Kamara and Moataz, Eurocrypt ’19 ), or the use of padding techniques like the ones recently proposed by Bost and Fouque (Bost and Fouque, IACR ePrint 2017/1060).

  7. SPAR Pilot Evaluation 2015 EncryptedDatabases apps.dtic.mil
    Benjamin Fuller, Darby Mitchell, Robert Cunningham, Uri Blumenthal, Patrick Cable, Ariel Hamlin, Lauren Milechin, Mark Rabe, Nabil Schear Richard Shay Mayank Varia Sophia Yakoubov Arkady Yerukhimovich

  8. The State of the Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribution 2020 Attacks EncryptedDatabases Oakland SearchableEncryption eprint.iacr.org
    Evgenios M. Kornaropoulos and Charalampos Papamanthou and Roberto Tamassia

    Recent foundational work on leakage-abuse attacks on encrypted databases has broadened our understanding of what an adversary can accomplish with a standard leakage profile. Nevertheless, all known value reconstruction attacks succeed under strong assumptions that may not hold in the real world. The most prevalent assumption is that queries are issued uniformly at random by the client. We present the first value reconstruction attacks that succeed without any knowledge about the query or data distribution. Our approach uses the search-pattern leakage, which exists in all known structured encryption schemes but has not been fully exploited so far. At the core of our method lies a support size estimator, a technique that utilizes the repetition of search tokens with the same response to estimate distances between encrypted values without any assumptions about the underlying distribution. We develop distribution-agnostic reconstruction attacks for both range queries and k-nearest neighbor (k-NN) queries based on information extracted from the search-pattern leakage. Our new range attack follows a different algorithmic approach than state-of-the-art attacks, which are fine-tuned to succeed under the uniformly distributed queries. Instead, we reconstruct plaintext values under a variety of skewed query distributions and even outperform the accuracy of previous approaches under the uniform query distribution. Our new k-NN attack succeeds with far fewer samples than previous attacks and scales to much larger values of k. We demonstrate the effectiveness of our attacks by experimentally testing them on a wide range of query distributions and database densities, both unknown to the adversary.

  9. DROWN: Breaking TLS using SSLv2 2016 Attacks KeyExchange Measurement Network Protocols TLS Usenix drownattack.com
    Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval Shavitt

    We present DROWN, a novel cross-protocol attack on TLS that uses a server supporting SSLv2 as an oracle to decrypt modern TLS connections.
    We introduce two versions of the attack. The more general form exploits multiple unnoticed protocol flaws in SSLv2 to develop a new and stronger variant of the Bleichenbacher RSA padding-oracle attack. To decrypt a 2048-bit RSA TLS ciphertext, an attacker must observe
    1,000 TLS handshakes, initiate 40,000 SSLv2 connections, and perform 2^50 offline work. The victim client never initiates SSLv2 connections. We implemented the attack and can decrypt a TLS 1.2 handshake using 2048-bit RSA in under 8 hours, at a cost of $440 on Amazon EC2. Using Internet-wide scans, we find that 33% of all HTTPS servers and 22% of those with browser-trusted certificates are vulnerable to this protocol-level attack due
    to widespread key and certificate reuse.
    For an even cheaper attack, we apply our new techniques together with a newly discovered vulnerability in OpenSSL that was present in releases from 1998 to early 2015. Given an unpatched SSLv2 server to use as an oracle, we can decrypt a TLS ciphertext in one minute on a single CPU - fast enough to enable man-in-the-middle attacks against modern browsers. We find that 26% of HTTPS servers are vulnerable to this attack.
    We further observe that the QUIC protocol is vulnerable to a variant of our attack that allows an attacker to impersonate a server indefinitely after performing as few as 2^17 SSLv2 connections and 2^58 offline work.
    We conclude that SSLv2 is not only weak, but actively harmful to the TLS ecosystem.

  10. Protecting the 4G and 5G Cellular Paging Protocols against Security and Privacy Attacks 2020 CellularProtocols PETS petsymposium.org
    Ankush Singla, Syed Rafiul Hussain, Omar Chowdhury, Elisa Bertino, Ninghui Li

    This paper focuses on protecting the cellular paging protocol — which balances between the quality-of-service and battery consumption of a device— against security and privacy attacks. Attacks against this protocol can have severe repercussions, for instance,allowing attacker to infer a victim’s location, leak a victim’s IMSI, and inject fabricated emergency alerts.To secure the protocol, we first identify the underlying design weaknesses enabling such attacks and then pro-pose efficient and backward-compatible approaches to address these weaknesses. We also demonstrate the deployment feasibility of our enhanced paging protocol by implementing it on an open-source cellular protocol library and commodity hardware. Our evaluation demonstrates that the enhanced protocol can thwart attacks without incurring substantial overhead.

  11. Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols 2020 Bluetooth PETS WirelessProtocols petsymposium.org
    Guillaume Celosia, Mathieu Cunche

    Apple Continuity protocols are the underlying network component of Apple Continuity services which allow seamless nearby applications such as activity and file transfer, device pairing and sharing a network connection. Those protocols rely on Bluetooth Low Energy (BLE) to exchange information between devices: Apple Continuity messages are embedded in the pay-load of BLE advertisement packets that are periodically broadcasted by devices. Recently, Martin et al. identified [1] a number of privacy issues associated with Apple Continuity protocols; we show that this was just the tip of the iceberg and that Apple Continuity protocols leak a wide range of personal information. In this work, we present a thorough reverse engineering of Apple Continuity protocols that we use to uncover a collection of privacy leaks. We introduce new artifacts, including identifiers, counters and battery levels, that can be used for passive tracking, and describe a novel active tracking attack based on Handoff messages. Beyond tracking issues, we shed light on severe privacy flaws. First, in addition to the trivial exposure of device characteristics and status, we found that HomeKit accessories betray human activities in a smarthome. Then, we demonstrate that AirDrop and Nearby Action protocols can be leveraged by passive observers to recover e-mail addresses and phone numbers of users. Finally, we exploit passive observations on the advertising traffic to infer Siri voice commands of a user.

  12. Practical Multi-party Private Set Intersection from Symmteric-Key Techniques 2017 CCS MPC PSI acmccs.github.io
    Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu

    We present a new paradigm for multi-party private set intersection (PSI) that allows $n$ parties to compute the intersection of their datasets without revealing any additional information. We explore a variety of instantiations of this paradigm. Our protocols avoid computationally expensive public-key operations and are secure in the presence of any number of semi-honest participants (i.e., without an honest majority).


    We demonstrate the practicality of our protocols with an implementation. To the best of our knowledge, this is the first implementation of a multi-party PSI protocol. For 5 parties with data-sets of 220 items each, our protocol requires only 72 seconds. In an optimization achieving a slightly weaker variant of security (augmented semi-honest model), the same task requires only 22 seconds.


    The technical core of our protocol is oblivious evaluation of a programmable pseudorandom function (OPPRF), which we instantiate in three different ways. We believe our new OPPRF abstraction and constructions may be of independent interest.

  13. Computation on Encrypted Data using Dataflow Authentication 2020 AuthenticatedEncryption PETS petsymposium.org
    Andreas Fischer, Benny Fuhry, Florian Kerschbaum, and Eric Bodden

    Encrypting data before sending it to the cloud protects it against hackers and malicious insiders, but requires the cloud to compute on encrypted data. Trusted (hardware) modules, e.g., secure enclaves like Intel’s SGX, can very efficiently run entire programs in encrypted memory. However, it already has been demonstrated that software vulnerabilities give an attacker ample opportunity to insert arbitrary code into the program. This code can then modify the data flow of the program and leak any secret in the program to an observer in the cloud via SGX side-channels. Since any larger program is rife with software vulnerabilities, it is not a good idea to outsource entire programs to an SGX enclave. A secure alternative with a small trusted code base would be fully homomorphic encryption (FHE) – the holy grail of encrypted computation. However, due to its high computational complexity it is unlikely to be adopted in the near future. As a result researchers have made several proposals for transforming programs to perform encrypted computations on less powerful encryption schemes. Yet, current approaches fail on programs that make control-flow decisions based on encrypted data. In this paper, we introduce the concept of data flow authentication (DFAuth). DFAuth prevents an adversary from arbitrarily deviating from the data flow of a program. Hence, an attacker cannot perform an attack as outlined before on SGX. This enables that all programs, even those including operations on control-flow decision variables, can be computed on encrypted data. We implemented DFAuth using a novel authenticated homomorphic encryption scheme, a Java bytecode-to-bytecode compiler producing fully executable programs, and SGX enclaves. A transformed neural network that performs machine learning on sensitive medical data can be evaluated on encrypted inputs and encrypted weights in 0.86 seconds.

  14. Malicious Secure Private Set Intersection via Dual Execution 2017 CCS Implementation PSI acmccs.github.io
    Peter Rindal and Mike Rosulek

    Private set intersection (PSI) allows two parties, who each hold a set of items, to compute the intersection of those sets without revealing anything about other items. Recent advances in PSI have significantly improved its performance for the case of semi-honest security, making semi-honest PSI a practical alternative to insecure methods for computing intersections. However, the semi-honest security model is not always a good fit for real-world problems.


    In this work we introduce a new PSI protocol that is secure in the presence of malicious adversaries. Our protocol is based entirely on fast symmetric-key primitives and inherits important techniques from state-of-the-art protocols in the semi-honest setting. Our novel technique to strengthen the protocol for malicious adversaries is inspired by the dual execution technique of Mohassel & Franklin (PKC 2006). Our protocol is optimized for the random-oracle model, but can also be realized (with a performance penalty) in the standard model.


    We demonstrate our protocol’s practicality with a prototype implementation. To securely compute the intersection of two sets of size 220 requires only 13 seconds with our protocol, which is ~12x faster than the previous best malicious-secure protocol (Rindal & Rosulek, Eurocrypt 2017), and only 3x slower than the best semi-honest protocol (Kolesnikov et al., CCS 2016).

  15. Economy Class Crypto: Exploring Weak Cipher Usage in Avionic Communications via ACARS 2017 Attacks FinancialCryptography PhysicalSystems fc17.ifca.ai
    Matthew Smith, Daniel Moser, Martin Strohmeier, Vincent Lenders, Ivan Martinovic

    Recent research has shown that a number of existing wireless avionic systems lack encryption and are thus vulnerable to eavesdropping and message injection attacks. The Aircraft Communications Addressing and Reporting System (ACARS) is no exception to this rule with 99% of the traffic being sent in plaintext. However, a small portion of the traffic coming mainly from privately-owned and government aircraft is encrypted, indicating a stronger requirement for security and privacy by those users. In this paper, we take a closer look at this protected communication and analyze the cryptographic solution being used. Our results show that the cipher used for this encryption is a mono-alphabetic substitution cipher, broken with little effort. We assess the impact on privacy and security to its unassuming users by characterizing months of real-world data, decrypted by breaking the cipher and recovering the keys. Our results show that the decrypted data leaks privacy sensitive information including existence, intent and status of aircraft owners.

  16. A Simpler Rate-Optimal CPIR Protocol 2017 FinancialCryptography PIR fc17.ifca.ai
    Helger Lipmaa, Kateryna Pavlyk

    In PETS 2015, Kiayias, Leonardos, Lipmaa, Pavlyk, and Tang proposed the first (n, 1)-CPIR protocol with rate 1−𝑜(1). They use advanced techniques from multivariable calculus (like the Newton-Puiseux algorithm) to establish optimal rate among a large family of different CPIR protocols. It is only natural to ask whether one can achieve similar rate but with a much simpler analysis. We propose parameters to the earlier (n, 1)-CPIR protocol of Lipmaa (ISC 2005), obtaining a CPIR protocol that is asymptotically almost as communication-efficient as the protocol of Kiayias et al. However, for many relevant parameter choices, it is slightly more communication-efficient, due to the cumulative rounding errors present in the protocol of Kiayias et al. Moreover, the new CPIR protocol is simpler to understand, implement, and analyze. The new CPIR protocol can be used to implement (computationally inefficient) FHE with rate 1−𝑜(1).

  17. Why Banker Bob (still) can't get TLS right: A Security Analysis of TLS in Leading UK Banking Apps 2017 FinancialCryptography TLS fc17.ifca.ai
    Tom Chothia, Flavio Garcia, Christopher Heppel, Christopher McMahon-Stone

    This paper presents a security review of the mobile apps provided by the UK’s leading banks; we focus on the connections the apps make, and the way in which TLS is used. We apply existing TLS testing methods to the apps which only find errors in legacy apps. We then go on to look at extensions of these methods and find five of the apps have serious vulnerabilities. In particular, we find an app that pins a TLS root CA certificate, but do not verify the hostname. In this case, the use of certificate pinning means that all existing test methods would miss detecting the hostname verification flaw. We also find one app that doesn’t check the certificate hostname, but bypasses proxy settings, resulting in failed detection by pentesting tools. We find that three apps load adverts over insecure connections, which could be exploited for in-app phishing attacks. Some of the apps used the users’ PIN as authentication, for which PCI guidelines require extra security, so these apps use an additional cryptographic protocol; we study the underlying protocol of one banking app in detail and show that it provides little additional protection, meaning that an active man-in-the-middle attacker can retrieve the user’s credentials, login to the bank and perform every operation the legitimate user could.

  18. Fast Private Set Intersection from Homorphic Encryption 2017 CCS PSI acmccs.github.io
    Hao Chen, Kim Laine, and Peter Rindal

    Private Set Intersection (PSI) is a cryptographic technique that allows two parties to compute the intersection of their sets without revealing anything except the intersection. We use fully homomorphic encryption to construct a fast PSI protocol with a small communication overhead that works particularly well when one of the two sets is much smaller than the other, and is secure against semi-honest adversaries.


    The most computationally efficient PSI protocols have been constructed using tools such as hash functions and oblivious transfer, but a potential limitation with these approaches is the communication complexity, which scales linearly with the size of the larger set. This is of particular concern when performing PSI between a constrained device (cellphone) holding a small set, and a large service provider (e.g. WhatsApp), such as in the Private Contact Discovery application.


    Our protocol has communication complexity linear in the size of the smaller set, and logarithmic in the larger set. More precisely, if the set sizes are Ny < Nx, we achieve a communication overhead of O(Ny log Nx). Our running-time-optimized benchmarks show that it takes 36 seconds of online-computation, 71 seconds of non-interactive (receiver-independent) pre-processing, and only 12.5MB of round trip communication to intersect five thousand 32-bit strings with 16 million 32-bit strings. Compared to prior works, this is roughly a 38–115x reduction in communication with minimal difference in computational overhead.

  19. Formal Modeling and Verification for Domain Validation and ACME 2017 FinancialCryptography FormalVerification fc17.ifca.ai
    Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Nadim Kobeissi

    Web traffic encryption has shifted from applying only to highly sensitive websites (such as banks) to a majority of all Web requests. Until recently, one of the main limiting factors for enabling HTTPS is the requirement to obtain a valid certificate from a trusted certification authority, a tedious process that typically involves fees and ad-hoc key generation, certificate request and domain validation procedures. To remove this barrier of entry, the Internet Security Research Group created Let’s Encrypt, a new non-profit certificate authority which uses a new protocol called Automatic Certificate Management Environment (ACME) to automate certificate management at all levels (request, validation , issuance, renewal, and revocation) between clients (website operators) and servers (certificate authority nodes). Let’s Encrypt’s success is measured by its issuance of over 12 million free certificates since its launch in April 2016. In this paper, we survey the existing process for issuing domain-validated certificates in major certification authorities to build a security model of domain-validated certificate issuance. We then model the ACME protocol in the applied pi-calculus and verify its stated security goals against our threat model of domain validation. We compare the effective security of different domain validation methods and show that ACME can be secure under a stronger threat model than that of traditional CAs. We also uncover weaknesses in some flows of ACME 1.0 and propose verified improvements that have been adopted in the latest protocol draft submitted to the IETF.

  20. Unilaterally-Authenticated Key Exchange 2017 FinancialCryptography KeyExchange fc17.ifca.ai
    Yevgeniy Dodis, Dario Fiore

    Key Exchange (KE), which enables two parties (e.g., a client and a server) to securely establish a common private key while communicating over an insecure channel, is one of the most fundamental cryptographic primitives. In this work, we address the setting of unilaterally-authenticated key exchange (UAKE), where an unauthenticated (unkeyed) client establishes a key with an authenticated (keyed) server. This setting is highly motivated by many practical uses of KE on the Internet, but received relatively little attention so far.


    Unlike the prior work, defining UAKE by downgrading a relatively complex definition of mutually authenticated key exchange (MAKE), our definition follows the opposite approach of upgrading existing definitions of public key encryption (PKE) and signatures towards UAKE. As a result, our new definition is short and easy to understand. Nevertheless, we show that it is equivalent to the UAKE definition of Bellare-Rogaway (when downgraded from MAKE), and thus captures a very strong and widely adopted security notion, while looking very similar to the simple ``one-oracle’’ definition of traditional PKE/signature schemes. As a benefit of our intuitive framework, we show two exactly-as-you-expect (i.e., having no caveats so abundant in the KE literature!) UAKE protocols from (possibly interactive) signature and encryption. By plugging various one- or two-round signature and encryption schemes, we derive provably-secure variants of various well-known UAKE protocols (such as a unilateral variant of SKEME with and without perfect forward secrecy, and Shoup’s A-DHKE-1), as well as new protocols, such as the first 2-round UAKE protocol which is both (passively) forward deniable and forward-secure.


    To further clarify the intuitive connections between PKE/Signatures and UAKE, we define and construct stronger forms of (necessarily interactive) PKE/Signature schemes, called confirmed encryption and confidential authentication, which, respectively, allow the sender to obtain confirmation that the (keyed) receiver output the correct message, or to hide the content of the message being authenticated from anybody but the participating (unkeyed) receiver. Using confirmed PKE/confidential authentication, we obtain two concise UAKE protocols of the form: ``send confirmed encryption/confidential authentication of a random key K
    .’’

  21. A Provably Secure PKCS#11 Configuration Without Authenticated Attributes 2017 FinancialCryptography fc17.ifca.ai
    Ryan Stanley-Oakes

    Cryptographic APIs like PKCS#11 are interfaces to trusted hardware where keys are stored; the secret keys should never leave the trusted hardware in plaintext. In PKCS#11 it is possible to give keys conflicting roles, leading to a number of key-recovery attacks. To prevent these attacks, one can authenticate the attributes of keys when wrapping, but this is not standard in PKCS#11. Alternatively, one can configure PKCS#11 to place additional restrictions on the commands permitted by the API.


    Bortolozzo et al. proposed a configuration of PKCS#11, called the Secure Templates Patch (STP), supporting symmetric encryption and key wrapping. However, the security guarantees for STP given by Bortolozzo et al. are with respect to a weak attacker model. STP has been implemented as a set of filtering rules in Caml Crush, a software filter for PKCS#11 that rejects certain API calls. The filtering rules in Caml Crush extend STP by allowing users to compute and verify MACs and so the previous analysis of STP does not apply to this configuration.


    We give a rigorous analysis of STP, including the extension used in Caml Crush. Our contribution is as follows:


    (i) We show that the extension of STP used in Caml Crush is insecure.


    (ii) We propose a strong, computational security model for configurations of PKCS#11 where the adversary can adaptively corrupt keys and prove that STP is secure in this model.


    (iii) We prove the security of an extension of STP that adds support for public-key encryption and digital signatures.

  22. Practical Graphs for Optimal Side-Channel Resistant Memory Hard Functions 2017 CCS Hashing Implementation eprint.iacr.org
    Joel Alwen, Jeremiah Blocki, and Ben Harsha

    A memory-hard function (MHF) ƒn with parameter n can be computed in sequential time and space n. Simultaneously, a high amortized parallel area-time complexity (aAT) is incurred per evaluation. In practice, MHFs are used to limit the rate at which an adversary (using a custom computational device) can evaluate a security sensitive function that still occasionally needs to be evaluated by honest users (using an off-the-shelf general purpose device). The most prevalent examples of such sensitive functions are Key Derivation Functions (KDFs) and password hashing algorithms where rate limits help mitigate off-line dictionary attacks. As the honest users’ inputs to these functions are often (low-entropy) passwords special attention is given to a class of side-channel resistant MHFs called iMHFs.


    Essentially all iMHFs can be viewed as some mode of operation (making n calls to some round function) given by a directed acyclic graph (DAG) with very low indegree. Recently, a combinatorial property of a DAG has been identified (called “depth-robustness”) which results in good provable security for an iMHF based on that DAG. Depth-robust DAGs have also proven useful in other cryptographic applications. Unfortunately, up till now, all known very depth-robust DAGs are impractically complicated and little is known about their exact (i.e. non-asymptotic) depth-robustness both in theory and in practice.


    In this work we build and analyze (both formally and empirically) several exceedingly simple and efficient to navigate practical DAGs for use in iMHFs and other applications. For each DAG we:
    Prove that their depth-robustness is asymptotically maximal.
    Prove bounds of at least 3 orders of magnitude better on their exact depth-robustness compared to known bounds for other practical iMHF.
    Implement and empirically evaluate their depth-robustness and aAT against a variety of state-of-the art (and several new) depth-reduction and low aAT attacks. We find that, against all attacks, the new DAGs perform significantly better in practice than Argon2i, the most widely deployed iMHF in practice.


    Along the way we also improve the best known empirical attacks on the aAT of Argon2i by implementing and testing several heuristic versions of a (hitherto purely theoretical) depth-reduction attack. Finally, we demonstrate practicality of our constructions by modifying the Argon2i code base to use one of the new high aAT DAGs. Experimental benchmarks on a standard off-the-shelf CPU show that the new modifications do not adversely affect the impressive throughput of Argon2i (despite seemingly enjoying significantly higher aAT).

  23. Efficient No-dictionary Verifiable SSE 2017 FinancialCryptography SearchableEncryption fc17.ifca.ai
    Wakaha Ogata, Kaoru Kurosawa

    In the model of “no-dictionary” verifiable searchable symmetric encryption (SSE) scheme, a client does not need to keep the set of keywords W in the search phase, where W is called a dictionary. Still a malicious server cannot cheat the client by saying that ``your search word w does not exist in the dictionary W” when it exists. In the previous such schemes, it takes O(logm) time for the server to prove that w∉W, where m=|W| is the number of keywords. In this paper, we show a generic method to transform any SSE scheme (that is only secure against passive adversaries) to a no-dictionary verifiable SSE scheme. In the transformed scheme, it takes only O(1) time for the server to prove that w∉W.

  24. Secure Multiparty Computation from SGX 2017 FinancialCryptography IntelSGX MPC fc17.ifca.ai
    Bernardo Portela, Manuel Barbosa, Guillaume Scerri, Bogdan Warinschi, Raad Bahmani, Ferdinand Brasser, Ahmad-Reza Sadeghi

    Isolated Execution Environments (IEE) offered by novel commodity hardware such as Intel’s SGX deployed in Skylake processors permit executing software in a protected environment that shields it from a malicious operating system; it also permits a remote user to obtain strong interactive attestation guarantees on both the code running in an IEE and its input/output behaviour. In this paper we show how IEEs provide a new path to constructing general secure multiparty computation (MPC) protocols. Our protocol is intuitive and elegant: it uses code within an IEE to play the role of a trusted third party (TTP), and the attestation guarantees of SGX to bootstrap secure communications between participants and the TTP. In our protocol the load of communications and computations on participants only depends on the size of each party’s inputs and outputs and is thus small and independent from the intricacy of the functionality to be computed. The remaining computational load– essentially that of computing the functionality – is moved to an untrusted party running an IEE-enabled machine, an appealing feature for Cloud-based scenarios. However, as often the case even with the simplest cryptographic protocols, we found that there is a large gap between this intuitively appealing solution and a protocol with rigorous security guarantees. We bridge this gap through a comprehensive set of results that include: i. a detailed construction of a protocol for secure computation for arbitrary functionalities; ii. formal security definitions for the security of the overall protocol and that of its components; and iii. a modular security analysis of our protocol that relies on a novel notion of labeled attested computation. We implemented and extensively evaluated our solution on SGX-enabled hardware, providing detailed measurements of our protocol as well as comparisons with software-only MPC solutions. Furthermore, we show the cost induced by using constant-time, i.e., timing side channel resilient, code in our implementation.

  25. Efficient Round-Optimal Blind Signatures in the Standard Model 2017 FinancialCryptography Privacy Signatures fc17.ifca.ai
    Essam Ghadafi

    Blind signatures are at the core of e-cash systems and have numerous other applications. In this work we construct efficient blind and partially blind signature schemes over bilinear groups in the standard model. Our schemes yield short signatures consisting of only a couple of elements from the shorter source group and have very short communication overhead consisting of 1 group element on the user side and 3 group elements on the signer side. At 80-bit security, our schemes yield signatures consisting of only 40 bytes which is 67% shorter than the most efficient existing scheme with the same security in the standard model. Verification in our schemes requires only a couple of pairings. Our schemes compare favorably in every efficiency measure to all existing counterparts offering the same security in the standard model. In fact, the efficiency of our signing protocol as well as the signature size compare favorably even to many existing schemes in the random oracle model. For instance, our signatures are shorter than those of Brands’ scheme which is at the heart of the U-Prove anonymous credential system used in practice. The unforgeability of our schemes is based on new intractability assumptions of a ``one-more’’ type which we show are intractable in the generic group model, whereas their blindness holds w.r.t.~malicious signing keys in the information-theoretic sense. We also give variants of our schemes for a vector of messages.